Coupling waste heat recovery with internal combustion engines creates opportunities to improve overall system efficiency and power output. The internal combustion engine has multiple pathways for dissipating thermal energy; the engine's exhaust is one that is conveniently accessible for converting to useful work via waste heat recovery. Coincident with increased waste heat recovery efforts, however, is increased engine efficiency improvement efforts. Anecdotally, an increase in engine efficiency will typically result in a decrease in exhaust exergy, thus decreasing the power capability of a waste heat recovery system. Further, other developments are taking place with internal combustion engines, such as the use of alternative fuels and combustion modes designed to decrease engine emissions, which may affect engine exergy. This article explores the relationships that may exist, both fundamentally and in practical application, between engine parameters and the corresponding effect on the maximum waste heat recovery potential (i.e., exergy) of the engine's exhaust. Specifically, the objectives of this study are to quantify (1) the effects of typical trends in internal combustion engine technology (i.e., increased compression ratio, decreased fuel–air equivalence ratio, and increased exhaust gas recirculation level) on waste heat recovery potential, (2) the role certain alternative fuels, particularly biodiesel, may have on waste recovery, and (3) the influence of and opportunities created by certain advanced modes of combustion, particularly low temperature combustion (LTC), on waste heat recovery potential. The study finds that fundamental engine parameters that typically result in increases in engine efficiency (i.e., increased compression ratio, decreased fuel–air equivalence ratio, and increased exhaust gas recirculation level) result in decreased exhaust exergy that decreases both efficiency and maximum power capability of a waste heat recovery system. Practical application of alternative fuels, such as biodiesel, seems to have small to no effect on the waste heat recovery. Application of novel modes of combustion, such as LTC, may result in decreases in waste heat recovery due to decreased exhaust mass flow rates typical of such combustion modes. Waste heat recovery may, however, create an opportunity to increase efficiency of LTC by exploiting chemical-to-thermal exothermic generation associated with the typically observed high concentrations of unburned fuel in the exhaust.

References

1.
Kaiper
,
G.
,
2004
, “
US Energy Flow Trends—2002
,” Report No. UCRL-TR-129990-02. Available at: Available at: https://e-reports-ext.llnl.gov/pdf/308904.pdf
2.
Hammond
,
G. P.
, and
Norman
,
J. B.
,
2014
, “
Heat Recovery Opportunities in UK Industry
,”
Appl. Energy
,
116
, pp.
387
397
.10.1016/j.apenergy.2013.11.008
3.
Sprouse
,
C.
, III
, and
Depcik
,
C.
,
2013
, “
Review of Organic Rankine Cycles for Internal Combustion Engine Exhaust Waste Heat Recovery
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
711
722
.10.1016/j.applthermaleng.2012.10.017
4.
Shu
,
G.
,
Li
,
X.
,
Tian
,
H.
,
Liang
,
X.
,
Wei
,
H.
, and
Wang
,
X.
,
2014
, “
Alkanes as Working Fluids for High-Temperature Exhaust Heat Recovery of Diesel Engine Using Organic Rankine Cycle
,”
Appl. Energy
,
119
, pp.
204
217
.10.1016/j.apenergy.2013.12.056
5.
Sprouse
,
C.
, III
, and
Depcik
,
C.
,
2013
, “
Organic Rankine Cycles With Dry Fluids for Small Engine Exhaust Waste Heat Recovery
,”
SAE Int. J. Altern. Power
,
2
(
1
), pp.
96
104
.10.4271/2013-01-0878
6.
Srinivasan
,
K. K.
,
Mago
,
P. J.
,
Zdaniuk
,
G. J.
,
Chamra
,
L. M.
, and
Midkiff
,
K. C.
,
2008
, “
Improving the Efficiency of the Advanced Injection Low Pilot Ignited Natural Gas Engine Using Organic Rankine Cycles
,”
ASME J. Energy Res. Technol.
,
130
(
2
), p.
022201
.10.1115/1.2906123
7.
Stobart
,
R.
,
Wijewardane
,
A.
, and
Allen
,
C.
,
2010
, “
The Potential for Thermo-Electric Devices in Passenger Vehicle Applications
,”
SAE
Paper No. 2010-01-0833. 10.4271/2010-01-0833
8.
Schock
,
H.
,
Brereton
,
G.
,
Case
,
E.
,
D'Angelo
,
J.
,
Hogan
,
T.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Novak
,
J.
,
Nelson
,
C.
,
Panayi
,
A.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Shih
,
T.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2013
, “
Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications
,”
ASME J. Energy Res. Technol.
,
135
(
2
), p.
022001
.10.1115/1.4023097
9.
Shu
,
G.
,
Liu
,
L.
,
Tian
,
H.
,
Wei
,
H.
, and
Yu
,
G.
,
2014
, “
Parametric and Working Fluid Analysis of a Dual-Loop Organic Rankine Cycle (DORC) Used in Engine Waste Heat Recovery
,”
Appl. Energy
,
113
, pp.
1188
1198
.10.1016/j.apenergy.2013.08.027
10.
Patterson
,
A. T. C.
,
Tett
,
R. J.
, and
McGuire
,
J.
,
2009
, “
Exhaust Heat Recovery Using Electro-Turbogenerators
,”
SAE
Paper No. 2009-01-1604.10.4271/2009-01-1604
11.
Solomon
,
D.
,
1991
, “
Design of a Thermomagnetic Generator
,”
Energy Convers. Manage.
,
31
(
2
), pp.
157
173
.10.1016/0196-8904(91)90068-T
12.
Vuarnoz
,
D.
,
Kitanovski
,
A.
,
Gonin
,
C.
,
Borgeaud
,
Y.
,
Delessert
,
M.
,
Meinen
,
M.
, and
Egolf
,
P. W.
,
2012
, “
Quantitative Feasibility Study of Magnetocaloric Energy Conversion Utilizing Industrial Waste Heat
,”
Appl. Energy
,
100
, pp.
229
237
.10.1016/j.apenergy.2012.04.051
13.
Armstead
,
J. R.
, and
Miers
,
S. A.
,
2014
, “
Review of Waste Heat Recovery Mechanisms for Internal Combustion Engines
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
14001
.10.1115/1.4024882
14.
Crane
,
D. T.
, and
Bell
,
L. E.
,
2009
, “
Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source
,”
ASME J. Energy Res. Technol.
,
131
(
1
), p.
012401
.10.1115/1.3066392
15.
Hendricks
,
T. J.
,
2007
, “
Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems
,”
ASME J. Energy Res. Technol.
,
129
(
3
), pp.
223
231
.10.1115/1.2751504
16.
Hussain
,
Q. E.
,
Brigham
,
D. R.
, and
Maranville
,
C. W.
,
2009
, “
Thermoelectric Exhaust Heat Recovery for Hybrid Vehicles
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1132
1142
.10.4271/2009-01-1327
17.
Srinivasan
,
K. K.
,
Mago
,
P. J.
, and
Krishnan
,
S. R.
,
2010
, “
Analysis of Exhaust Waste Heat Recovery From a Dual Fuel Low Temperature Combustion Engine Using an Organic Rankine Cycle
,”
Energy
,
35
(
6
), pp.
2387
2399
.10.1016/j.energy.2010.02.018
18.
Xie
,
H.
, and
Yang
,
C.
,
2013
, “
Dynamic Behavior of Rankine Cycle System for Waste Heat Recovery of Heavy Duty Diesel Engines Under Driving Cycle
,”
Appl. Energy
,
112
, pp.
130
141
.10.1016/j.apenergy.2013.05.071
19.
Horst
,
T. A.
,
Rottengruber
,
H.-S.
,
Seifert
,
M.
, and
Ringler
,
J.
,
2013
, “
Dynamic Heat Exchanger Model for Performance Prediction and Control System Design of Automotive Waste Heat Recovery Systems
,”
Appl. Energy
,
105
, pp.
293
303
.10.1016/j.apenergy.2012.12.060
20.
Shon
,
J.
,
Kim
,
H.
, and
Lee
,
K.
,
2014
, “
Improved Heat Storage Rate for an Automobile Coolant Waste Heat Recovery System Using Phase-Change Material in a Fin-Tube Heat Exchanger
,”
Appl. Energy
,
113
, pp.
680
689
.10.1016/j.apenergy.2013.07.049
21.
Quoilin
,
S.
,
Aumann
,
R.
,
Grill
,
A.
,
Schuster
,
A.
,
Lemort
,
V.
, and
Spliethoff
,
H.
,
2011
, “
Dynamic Modeling and Optimal Control Strategy of Waste Heat Recovery Organic Rankine Cycles
,”
Appl. Energy
,
88
(
6
), pp.
2183
2190
.10.1016/j.apenergy.2011.01.015
22.
Edson
,
M. H.
,
1964
, “
The Influence of Compression Ratio and Dissociation on Ideal Otto Cycle Engine Thermal Efficiency
,” SAE Digital Calculations of Engine Cycles,
SAE
, Warrendale, PA, pp.
49
64
.10.4271/620557
23.
Edson
,
M. H.
, and
Taylor
,
C. F.
,
1964
, “
The Limits of Engine Performance—Comparison of Actual and Theoretical Cycles
,” SAE Digital Calculations of Engine Cycles,
SAE
, Warrendale, PA, pp.
65
81
.10.4271/630077
24.
Foster
,
D. E.
, and
Myers
,
P. S.
,
1984
, “
Can Paper Engines Stand the Heat?
,”
SAE
Technical Paper No. 840911. 10.4271/840911
25.
McBride
,
B. J.
, and
Gordon
,
S.
,
1992
, “
Computer Program for Calculating and Fitting Thermodynamic Functions
,” NASA Report No. RP-1271.
26.
Bittle
,
J. A.
,
Knight
,
B. M.
, and
Jacobs
,
T. J.
,
2010
, “
Interesting Behavior of Biodiesel Ignition Delay and Combustion Duration
,”
Energy Fuels
,
24
(
8
), pp.
4166
4177
.10.1021/ef1004539
27.
Bittle
,
J. A.
,
Knight
,
B. M.
, and
Jacobs
,
T. J.
,
2010
, “
The Impact of Biodiesel on Injection Timing and Pulsewidth in a Common-Rail Medium-Duty Diesel Engine
,”
SAE Int. J. Engines
,
2
(
2
), pp.
312
325
.10.4271/2009-01-2782
28.
Knight
,
B. M.
,
Bittle
,
J. A.
, and
Jacobs
,
T. J.
,
2011
, “
The Role of System Response on Biodiesel Nitric Oxide Emissions in a Medium-Duty Diesel Engine
,”
Int. J. Eng. Res.
,
12
(
4
), pp.
336
352
.10.1177/1468087411399215
29.
Bittle
,
J. A.
,
Knight
,
B. M.
, and
Jacobs
,
T. J.
,
2011
, “
Investigation into the Use of Ignition Delay as an Indicator of Low-Temperature Diesel Combustion Attainment
,”
Combust. Sci. Technol.
,
183
(
2
), pp.
138
153
.
30.
Bittle
,
J. A.
,
Younger
,
J. K.
, and
Jacobs
,
T. J.
,
2010
, “
Biodiesel Effects on Influencing Parameters of Brake Fuel Conversion Efficiency in a Medium Duty Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122801
.10.1115/1.4001086
31.
Lancaster
,
D. R.
,
Krieger
,
R. B.
, and
Lienesch
,
J. H.
,
1975
, “
Measurement and Analysis of Engine Pressure Data
,”
SAE
Paper No. 750026. 10.4271/750026
32.
Depcik
,
C.
,
Jacobs
,
T.
,
Hagena
,
J.
, and
Assanis
,
D.
,
2007
, “
Instructional Use of a Single-Zone, Premixed Charge, Spark-Ignition Engine Heat Release Simulation
,”
Int. J. Mech. Eng. Educ.
,
35
(
1
), pp.
1
31
.10.7227/IJMEE.35.1.1
33.
Hohenberg
,
G. F.
,
1979
, “
Advanced Approaches for Heat Transfer Calculations
,”
SAE Trans.
, Paper No. 790825.10.4271/790825
34.
Figliola
,
R.
, and
Beasley
,
D.
,
2000
,
Theory and Design for Mechanical Measurements
,
Wiley
,
Hoboken
.
35.
Gibbs
,
J. W.
,
1928
,
The Collected Works of J. Willard Gibbs
,
Longmans, Green and Co
,
New York
.
36.
Caton
,
J. A.
,
2008
, “
Results From an Engine Cycle Simulation of Compression Ratio and Expansion Ratio Effects on Engine Performance
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
052809
.10.1115/1.2939013
37.
Caton
,
J. A.
,
2010
, “
First and Second Law Implications of Fuel Selection for an SI Engine
,”
2010 Spring Technical Meeting of the Central States Section of the Combustion Institute
.
38.
Diesel
,
R.
,
1897
, Diesel's Rational Heat Motor, Progressive Age, New York, (Translated Reprint of Lecture Delivered at Society of Cassell as First Appeared in Zeitschrift des Vereines Deutscher Ingenieure).
39.
Tompkins
,
B. T.
,
Song
,
H.
,
Bittle
,
J. A.
, and
Jacobs
,
T. J.
,
2012
, “
Efficiency Considerations for the Use of Blended Biofuel in Diesel Engines
,”
Appl. Energy
,
98
(
1
), pp.
209
218
.10.1016/j.apenergy.2012.03.025
40.
Knothe
,
G.
,
Matheaus
,
A. C.
, and
Ryan
,
T. W.
,
2003
, “
Cetane Numbers of Branched and Straight-Chain Fatty Esters Determined in an Ignition Quality Tester (Small Star, Filled)
,”
Fuel
,
82
(
8
), pp.
971
975
.10.1016/S0016-2361(02)00382-4
41.
Mueller
,
C. J.
,
Boehman
,
A. L.
, and
Martin
,
G. C.
,
2009
, “
An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine With Soy Biodiesel
,”
SAE
Paper No. 2009-01-1792, pp.
789
816
.10.4271/2009-01-1792
42.
Schönborn
,
A.
,
Ladommatos
,
N.
,
Williams
,
J.
,
Allan
,
R.
, and
Rogerson
,
J.
,
2009
, “
The Influence of Molecular Structure of Fatty Acid Monoalkyl Esters on Diesel Combustion
,”
Combust. Flame
,
156
(
7
), pp.
1396
1412
.10.1016/j.combustflame.2009.03.011
43.
Jacobs
,
T. J.
,
Bohac
,
S. V.
,
Assanis
,
D. N.
, and
Szymkowicz
,
P. G.
,
2005
, “
Lean and Rich Premixed Compression Ignition Combustion in a Light-Duty Diesel Engine
,”
SAE
Paper No. 2005-01-0166, pp.
382
393
.10.4271/2005-01-0166
44.
Okude
,
K.
,
Mori
,
K.
,
Shiino
,
S.
, and
Moriya
,
T.
,
2004
, “
Premixed Compression Ignition (PCI) Combustion for Simultaneous Reduction of NOx and Soot in Diesel Engine
,”
SAE
Paper No. 2004-01-1907, pp.
1002
1013
.10.4271/2004-01-1907
45.
Iwabuchi
,
Y.
,
Kawai
,
K.
,
Shoji
,
T.
, and
Takeda
,
Y.
,
1999
, “
Trial of New Concept Diesel Combustion System–Premixed Compression-Ignition Combustion
,”
SAE
Paper No. 1999-01-0185, pp.
142
151
.10.4271/1999-01-0185
46.
Knight
,
B. M.
,
Bittle
,
J. A.
, and
Jacobs
,
T. J.
,
2010
, “
Efficiency Considerations of Later-Phased Low Temperature Diesel Combustion
,”
ASME
Paper No. ICEF2010-35070. 10.1115/ICEF2010-35070
47.
Northrop
,
W. F.
,
Jacobs
,
T. J.
,
Assanis
,
D. N.
, and
Bohac
,
S. V.
,
2007
, “
Deactivation of a Diesel Oxidation Catalyst Due to Exhaust Species From Rich Premixed Compression Ignition Combustion in a Light-Duty Diesel Engine
,”
Int. J. Engine Res.
,
8
(
6
), pp.
487
498
.10.1243/14680874JER01307
48.
Jacobs
,
T. J.
, and
Assanis
,
D.
,
2008
, “
Characteristic Response of a Production Diesel Oxidation Catalyst Exposed to Lean and Rich PCI Exhaust
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
042805
.10.1115/1.2906174
49.
Tompkins
,
B. T.
,
Song
,
H.
, and
Jacobs
,
T. J.
,
2014
, “
Low Temperature Heat Release of Palm and Soy Biodiesel in Late Injection Low Temperature Combustion
,”
SAE Int. J. Fuels Lubr.
,
7
(
1
), pp.
106
115
.10.4271/2014-01-1381
You do not currently have access to this content.