The fundamental challenge in the synthesis/design optimization of energy systems is the definition of system configuration and design parameters. The traditional way to operate is to follow the previous experience, starting from the existing design solutions. A more advanced strategy consists in the preliminary identification of a superstructure that should include all the possible solutions to the synthesis/design optimization problem and in the selection of the system configuration starting from this superstructure through a design parameter optimization. This top–down approach cannot guarantee that all possible configurations could be predicted in advance and that all the configurations derived from the superstructure are feasible. To solve the general problem of the synthesis/design of complex energy systems, a new bottom–up methodology has been recently proposed by the authors, based on the original idea that the fundamental nucleus in the construction of any energy system configuration is the elementary thermodynamic cycle, composed only by the compression, heat transfer with hot and cold sources and expansion processes. So, any configuration can be built by generating, according to a rigorous set of rules, all the combinations of the elementary thermodynamic cycles operated by different working fluids that can be identified within the system, and selecting the best resulting configuration through an optimization procedure. In this paper, the main concepts and features of the methodology are deeply investigated to show, through different applications, how an artificial intelligence can generate system configurations of various complexity using preset logical rules without any “ad hoc” expertise.

References

1.
Frangopoulos
,
C. A.
,
Von Spakovsky
,
M. R.
, and
Sciubba
,
E.
,
2002
, “
A Brief Review of Methods for the Design and Synthesis Optimization of Energy Systems
,”
Int. J. Thermodyn.
,
5
(
4
), pp.
151
160
.http://dergipark.ulakbim.gov.tr/eoguijt/article/view/1034000097
2.
Rudd
,
D. F.
,
1968
, “
The Synthesis of System Designs—Part I: Elementary Decomposition Theory
,”
AIChE J.
,
14
(
2
), pp.
343
349
.
3.
Muñoz
,
J. R.
, and
Von Spakovsky
,
M. R.
,
2001
, “
A Decomposition Approach for the Large Scale Synthesis Design Optimization of Highly Coupled, Highly Dynamic Energy Systems
,”
Int. J. Thermodyn.
,
4
(
1
), pp.
19
33
.http://dergipark.ulakbim.gov.tr/eoguijt/article/view/1034000058
4.
Muñoz
,
J. R.
, and
von Spakovsky
,
M. R.
,
2001
, “
The Application of Decomposition to the Large Scale Synthesis/Design Optimization of Aircraft Energy Systems
,”
Int. J. Thermodyn.
,
4
(
2
), pp.
61
76
.http://dergipark.ulakbim.gov.tr/eoguijt/article/view/1034000066
5.
Rancruel
,
D. V.
, and
Spakovsky
,
M.
,
2005
, “
Development and Application of a Dynamic Decomposition Strategy for the Optimal Synthesis/Design and Operational/Control of a SOFC Based APU Under Transient Conditions
,”
ASME
Paper No. IMECE2005-82986.
6.
Rancruel
,
D. F.
, and
von Spakovsky
,
M. R.
,
2006
, “
Decomposition With Thermoeconomic Isolation Applied to the Optimal Synthesis/Design and Operation of an Advanced Tactical Aircraft System
,”
Energy
,
31
(
15
), pp.
3327
3341
.
7.
Lazzaretto
,
A.
,
Toffolo
,
A.
,
Morandin
,
M.
, and
Von Spakovsky
,
M. R.
,
2010
, “
Criteria for the Decomposition of Energy Systems in Local/Global Optimizations
,”
Energy
,
35
(
2
), pp.
1157
1163
.
8.
El-Sayed
,
Y. M.
, and
Gaggioli
,
R. A.
,
1988
, “
The Integration of Synthesis and Optimization for Conceptual Designs of Energy Systems
,”
ASME J. Energy Resour. Technol.
,
110
(
2
), pp.
109
113
.
9.
Tsatsaronis
,
G.
,
1993
, “
Thermoeconomic Analysis and Optimization of Energy Systems
,”
Prog. Energy Combust. Sci.
,
19
(
3
), pp.
227
257
.
10.
Lozano
,
M. A.
, and
Valero
,
A.
,
1993
, “
Theory of the Exergetic Cost
,”
Energy
,
18
(
9
), pp.
939
960
.
11.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and Moran, M.,
1996
,
Thermal Design and Optimization
,
Wiley
, Hoboken, NJ.
12.
Lazzaretto
,
A.
, and
Tsatsaronis
,
G.
,
2006
, “
SPECO: A Systematic and General Methodology for Calculating Efficiencies and Costs in Thermal Systems
,”
Energy
,
31
(
8–9
), pp.
1257
1289
.
13.
Linnhoff
,
B.
,
1989
, “
Pinch Technology for the Synthesis of Optimal Heat and Power Systems
,”
ASME J. Energy Resour. Technol.
,
111
(
3
), pp.
137
147
.
14.
Linnhoff
,
B.
,
ed
.
,
1982
,
A User Guide on Process Integration for the Efficient Use of Energy
,
Institution of Chemical Engineers
,
Rugby, UK
.
15.
Kemp
,
I. C.
,
2011
,
Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy
,
Butterworth-Heinemann
, Oxford, UK.
16.
Sciubba
,
E.
,
1998
, “
Toward Automatic Process Simulators—Part I: Modular Numerical Procedures
,”
ASME J. Eng. Gas Turbines Power
,
120
(
1
), pp.
1
8
.
17.
Sciubba
,
E.
,
1998
, “
Toward Automatic Process Simulators—Part II: An Expert System for Process Synthesis
,”
ASME J. Eng. Gas Turbines Power
,
120
(
1
), pp.
9
16
.
18.
Bertran
,
M. O.
,
Frauzem
,
R.
,
Sanchez-Arcilla
,
A. S.
,
Zhang
,
L.
,
Woodley
,
J. M.
, and
Gani
,
R.
,
2017
, “
A Generic Methodology for Processing Route Synthesis and Design Based on Superstructure Optimization
,”
Comput. Chem. Eng.
,
106
, pp.
892
910
.
19.
Cui
,
C.
,
Li
,
X.
,
Sui
,
H.
, and
Sun
,
J.
,
2017
, “
Optimization of Coal-Based Methanol Distillation Scheme Using Process Superstructure Method to Maximize Energy Efficiency
,”
Energy
,
119
, pp.
110
120
.
20.
Lashkajani
,
K. H.
,
Ghorbani
,
B.
,
Amidpour
,
M.
, and
Hamedi
,
M. H.
,
2016
, “
Superstructure Optimization of the Olefin Separation System by Harmony Search and Genetic Algorithms
,”
Energy
,
99
, pp.
288
303
.
21.
Lee
,
U.
,
Mitsos
,
A.
, and
Han
,
C.
,
2016
, “
Optimal Retrofit of a CO2 Capture Pilot Plant Using Superstructure and Rate-Based Models
,”
Int. J. Greenhouse Gas Control
,
50
, pp.
57
69
.
22.
Chaudry
,
S.
,
Bahri
,
P. A.
, and
Moheimani
,
N. R.
,
2017
, “
Superstructure Optimization and Energetic Feasibility Analysis of Process of Repetitive Extraction of Hydrocarbons From Botryococcus Braunii—A Species of Microalgae
,”
Comput. Chem. Eng.
,
97
, pp.
36
46
.
23.
Liu
,
L.
,
Du
,
J.
,
El-Halwagi
,
M. M.
,
Ponce-Ortega
,
J. M.
, and
Yao
,
P.
,
2013
, “
A Systematic Approach for Synthesizing Combined Mass and Heat Exchange Networks
,”
Comput. Chem. Eng.
,
53
, pp.
1
13
.
24.
Liu
,
L.
,
Du
,
J.
, and
Yang
,
F.
,
2015
, “
Combined Mass and Heat Exchange Network Synthesis Based on Stage-Wise Superstructure Model
,”
Chin. J. Chem. Eng.
,
23
(
9
), pp.
1502
1508
.
25.
Azeez
,
O. S.
,
Isafiade
,
A. J.
, and
Fraser
,
D. M.
,
2013
, “
Supply-Based Superstructure Synthesis of Heat and Mass Exchange Networks
,”
Comput. Chem. Eng.
,
56
, pp.
184
201
.
26.
Kwon
,
S.
,
Won
,
W.
, and
Kim
,
J.
,
2016
, “
A Superstructure Model of an Isolated Power Supply System Using Renewable Energy: Development and Application to Jeju Island, Korea
,”
Renewable Energy
,
97
, pp.
177
188
.
27.
Emmerich
,
M.
,
Grötzner
,
M.
, and
Schütz
,
M.
,
2001
, “
Design of Graph-Based Evolutionary Algorithms: A Case Study for Chemical Process Networks
,”
Evol. Comput.
,
9
(
3
), pp.
329
354
.
28.
Angelov
,
P.
,
Zhang
,
Y.
,
Wright
,
J.
,
Hanby
,
V.
, and
Buswell
,
R.
,
2003
, “
Automatic Design Synthesis and Optimization of Component-Based Systems by Evolutionary Algorithms
,”
Genetic and Evolutionary Computation Conference (GECCO), Chicago, IL, July 12–16
, p.
213
.
29.
Urselmann
,
M.
,
Emmerich
,
M. T.
,
Till
,
J.
,
Sand
,
G.
, and
Engell
,
S.
,
2007
, “
Design of Problem-Specific Evolutionary Algorithm/Mixed-Integer Programming Hybrids: Two-Stage Stochastic Integer Programming Applied to Chemical Batch Scheduling
,”
Eng. Optim.
,
39
(
5
), pp.
529
549
.
30.
Wright
,
J.
,
Zhang
,
Y.
,
Angelov
,
P.
,
Hanby
,
V.
, and
Buswell
,
R.
,
2008
, “
Evolutionary Synthesis of HVAC System Configurations: Algorithm Development (RP-1049)
,”
HVACR Res.
,
14
(
1
), pp.
33
55
.
31.
Voll
,
P.
,
Lampe
,
M.
,
Wrobel
,
G.
, and
Bardow
,
A.
,
2012
, “
Superstructure-Free Synthesis and Optimization of Distributed Industrial Energy Supply Systems
,”
Energy
,
45
(
1
), pp.
424
435
.
32.
Voll
,
P.
,
Klaffke
,
C.
,
Hennen
,
M.
, and
Bardow
,
A.
,
2013
, “
Automated Superstructure-Based Synthesis and Optimization of Distributed Energy Supply Systems
,”
Energy
,
50
, pp.
374
388
.
33.
Wang
,
L.
,
Voll
,
P.
,
Lampe
,
M.
,
Yang
,
Y.
, and
Bardow
,
A.
,
2015
, “
Superstructure-Free Synthesis and Optimization of Thermal Power Plants
,”
Energy
,
91
, pp.
700
711
.
34.
Wang
,
L.
,
Lampe
,
M.
,
Voll
,
P.
,
Yang
,
Y.
, and
Bardow
,
A.
,
2016
, “
Multi-Objective Superstructure-Free Synthesis and Optimization of Thermal Power Plants
,”
Energy
,
116
, pp.
1104
1116
.
35.
Lazzaretto
,
A.
, and
Segato
,
F.
,
2001
, “
Thermodynamic Optimization of the HAT Cycle Plant Structure—Part I: Optimization of the ‘Basic Plant Configuration’
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
1
7
.
36.
Lazzaretto
,
A.
, and
Segato
,
F.
,
2001
, “
Thermodynamic Optimization of the HAT Cycle Plant Structure—Part II: Structure of the Heat Exchanger Network
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
8
16
.
37.
Lazzaretto
,
A.
, and
Toffolo
,
A.
,
2008
, “
A Method to Separate the Problem of Heat Transfer Interactions in the Synthesis of Thermal Systems
,”
Energy
,
33
(
2
), pp.
163
170
.
38.
Morandin
,
M.
,
Toffolo
,
A.
, and
Lazzaretto
,
A.
,
2013
, “
Superimposition of Elementary Thermodynamic Cycles and Separation of the Heat Transfer Section in Energy Systems Analysis
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021602
.
39.
Toffolo
,
A.
,
2014
, “
A Synthesis/Design Optimization Algorithm for Rankine Cycle Based Energy Systems
,”
Energy
,
66
, pp.
115
127
.
40.
Lazzaretto
,
A.
,
Manente
,
G.
, and
Toffolo
,
A.
,
2017
, “
SYNTHSEP: A General Methodology for the Synthesis of Energy System Configurations Beyond Superstructures
,”
Energy
, 147, pp. 924–949.
41.
Toffolo
,
A.
,
Lazzaretto
,
A.
, and
Morandin
,
M.
,
2010
, “
The HEATSEP Method for the Synthesis of Thermal Systems: An Application to the S-Graz Cycle
,”
Energy
,
35
(
2
), pp.
976
981
.
42.
Rao
,
A. D.
,
1989
, “
Process for Producing Power
,” Fluor Technologies Corp, Irving, TX, U.S. Patent No.
4,829,763
.https://patents.google.com/patent/US4829763A/en
43.
Rao, A. D., Francuz, V. J., Shen, J. C., and West, E. W., 1991, “A Comparison of Humid Air Turbine (HAT) Cycle and Combined-Cycle Power Plants (No. EPRI-IE-7300),” Electric Power Research Institute, Palo Alto, CA.
44.
Rice
,
I.
,
1995
, “
Steam-Injected Gas Turbine Analysis: Steam Rates
,”
ASME J. Eng. Gas Turbines Power
,
117
(
2
), pp.
347
353
.
45.
Saad
,
M.
, and
Cheng
,
D.
,
1997
, “
The New LM2500 Cheng Cycle for Power Generation and Cogeneration
,”
Energy Convers. Manage.
,
38
(
15–17
), pp.
1637
1646
.
46.
Soffiato
,
M.
,
Frangopoulos
,
C. A.
,
Manente
,
G.
,
Rech
,
S.
, and
Lazzaretto
,
A.
,
2015
, “
Design Optimization of ORC Systems for Waste Heat Recovery on Board a LNG Carrier
,”
Energy Convers. Manage.
,
92
, pp.
523
534
.
47.
Toffolo
,
A.
,
Lazzaretto
,
A.
,
Manente
,
G.
, and
Paci
,
M.
,
2014
, “
A Multi-Criteria Approach for the Optimal Selection of Working Fluid and Design Parameters in Organic Rankine Cycle Systems
,”
Appl. Energy
,
121
, pp.
219
232
.
48.
Vivian
,
J.
,
Manente
,
G.
, and
Lazzaretto
,
A.
,
2015
, “
A General Framework to Select Working Fluid and Configuration of ORCs for Low-to-Medium Temperature Heat Sources
,”
Appl. Energy
,
156
, pp.
727
746
.
49.
Manente
,
G.
,
Lazzaretto
,
A.
, and
Bonamico
,
E.
,
2017
, “
Design Guidelines for the Choice Between Single and Dual Pressure Layouts in Organic Rankine Cycle (ORC) Systems
,”
Energy
,
123
, pp.
413
431
.
50.
Morandin
,
M.
,
Toffolo
,
A.
,
Lazzaretto
,
A.
,
Maréchal
,
F.
,
Ensinas
,
A. V.
, and
Nebra
,
S. A.
,
2011
, “
Synthesis and Parameter Optimization of a Combined Sugar and Ethanol Production Process Integrated With a CHP System
,”
Energy
,
36
(
6
), pp.
3675
3690
.
You do not currently have access to this content.