In oil and gas industry, production optimization is a viable technique to maximize the recovery or the net present value (NPV). Robust optimization is one type of production optimization techniques where the geological uncertainty of reservoir is considered. When well operating conditions, e.g., well flow rates settings of inflow control valves and bottom-hole pressures, are the optimization variables, ensemble-based optimization (EnOpt) is the most popular ensemble-based algorithm for the robust life-cycle production optimization. Recently, a superior algorithm, stochastic simplex approximate gradient (StoSAG), was proposed. Fonseca and co-workers (2016, A Stochastic Simplex Approximate Gradient (StoSAG) for Optimization Under Uncertainty, Int. J. Numer. Methods Eng., 109(13), pp. 1756–1776) provided a theoretical argument on the superiority of StoSAG over EnOpt. However, it has not drawn significant attention in the reservoir optimization community. The purpose of this study is to provide a refined theoretical discussion on why StoSAG is generally superior to EnOpt and to provide a reasonable example (Brugge field) where StoSAG generates estimates of optimal well operating conditions that give a life-cycle NPV significantly higher than the NPV obtained from EnOpt.

References

1.
Chen
,
B.
, and
Reynolds
,
A. C.
,
2016
, “
Ensemble-Based Optimization of the Water-Alternating-Gas-Injection Process
,”
SPE J.
,
21
(
3
), pp.
786
798
.
2.
Feng
,
Q.
,
Chen
,
H.
,
Wang
,
X.
,
Wang
,
S.
,
Wang
,
Z.
,
Yang
,
Y.
, and
Bing
,
S.
,
2016
, “
Well Control Optimization Considering Formation Damage Caused by Suspended Particles in Injected Water
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
21
32
.
3.
Siavashi
,
M.
,
Tehrani
,
M. R.
, and
Nakhaee
,
A.
,
2016
, “
Efficient Particle Swarm Optimization of Well Placement to Enhance Oil Recovery Using a Novel Streamline-Based Objective Function
,”
ASME J. Energy Res. Technol.
,
138
(
5
), p.
052903
.
4.
Zhang
,
K.
,
Zhang
,
X.
,
Ni
,
W.
,
Zhang
,
L.
,
Yao
,
J.
,
Li
,
L.
,
Yan
,
X.
,
2016
, “
Nonlinear Constrained Production Optimization Based on Augmented Lagrangian Function and Stochastic Gradient
,”
J. Petrol. Sci. Eng.
,
146
, pp.
418
431
.
5.
Zhang
,
K.
,
Zhang
,
H.
,
Zhang
,
L.
,
Li
,
P.
,
Zhang
,
X.
, and
Yao
,
J.
,
2017
, “
A New Method for the Construction and Optimization of Quadrangular Adaptive Well Pattern
,”
Comput. Geosci.
,
21
(
3
), pp.
499
518
.
6.
Guo
,
Z.
, and
Reynolds
,
A. C.
,
2018
, “
Robust Life-Cycle Production Optimization With a Support-Vector-Regression Proxy
,”
SPE J.
23
(
6
), pp.
2409
.
7.
Guo
,
Z.
, and
Reynolds
,
A. C.
,
2019
, “
Insim-Ft in Three-Dimensions With Gravity
,”
J. Comput. Phys.
,
380
, pp.
143
169
.
8.
Zhang
,
K.
,
Zhang
,
L.
,
Yao
,
J.
,
Chen
,
Y.
, and
Lu
,
R.
,
2014
, “
Water Flooding Optimization With Adjoint Model Under Control Constraints
,”
J. Hydrodynamics Ser. B
,
26
(
1
), pp.
75
85
.
9.
Chen
,
B.
, and
Reynolds
,
A. C.
,
2017
, “
Optimal Control of ICV’s and Well Operating Conditions for the Water-Alternating-Gas Injection Process
,”
J. Petrol. Sci. Eng.
,
149
, pp.
623
640
.
10.
Chen
,
H.
,
Feng
,
Q.
,
Zhang
,
X.
,
Wang
,
S.
,
Zhou
,
W.
, and
Geng
,
Y.
,
2017
, “
Well Placement Optimization Using an Analytical Formula-Based Objective Function and Cat Swarm Optimization Algorithm
,”
J. Petrol. Sci. Eng.
,
157
, pp.
1067
1083
.
11.
Chang
,
Y.
,
Bouzarkouna
,
Z.
, and
Devegowda
,
D.
,
2015
, “
Multi-Objective Optimization for Rapid and Robust Optimal Oilfield Development Under Geological Uncertainty
,”
Comput. Geosci.
,
19
(
4
), pp.
933
950
.
12.
Fonseca
,
R.
,
Chen
,
B.
,
Jansen
,
J.
, and
Reynolds
,
A.
,
2016
, “
A Stochastic Simplex Approximate Gradient (StoSAG) for Optimization Under Uncertainty
,”
Int. J. Numer. Methods Eng.
,
109
(
13
), pp.
1756
1776
.
13.
Chen
,
B.
,
Fonseca
,
R.-M.
,
Leeuwenburgh
,
O.
, and
Reynolds
,
A. C.
,
2017
, “
Minimizing the Risk in the Robust Life-Cycle Production Optimization Using Stochastic Simplex Approximate Gradient
,”
J. Petrol. Sci. Eng.
,
153
, pp.
331
344
.
14.
Chen
,
B.
, and
Reynolds
,
A. C.
,
2018
, “
CO2 Water-Alternating-Gas Injection for Enhanced Oil Recovery: Optimal Well Controls and Half-Cycle Lengths
,”
Comput. Chem. Eng.
,
113
, pp.
44
56
.
15.
van Essen
,
G. M.
,
Zandvliet
,
M. J.
,
denHof
,
P. M. J. V.
,
Bosgra
,
O. H.
, and
Jansen
,
J. D.
,
2009
, “
Robust Waterflooding Optimization of Multiple Geological Scenarios
,”
SPE J.
,
14
(
1
), pp.
202
210
.
16.
Capolei
,
A.
,
Suwartadi
,
E.
,
Foss
,
B.
, and
Jørgensen
,
J. B.
,
2013
, “
Waterflooding Optimization in Uncertain Geological Scenarios
,”
Comput. Geosci.
,
17
(
6
), pp.
991
1013
.
17.
Sarma
,
P.
,
Durlofsky
,
L.
,
Aziz
,
K.
, and
Chen
,
W.
,
2006
, “
Efficient Real-Time Reservoir Management Using Adjoint-Based Optimal Control and Model Updating
,”
Comput. Geosci.
10
(
1
), pp.
3
36
.
18.
Do
,
S. T.
, and
Reynolds
,
A. C.
,
2013
, “
Theoretical Connections Between Optimization Algorithms Based on an Approximate Gradient
,”
Comput. Geosci.
,
17
(
6
), pp.
959
973
.
19.
Wang
,
D.
,
Li
,
Y.
,
Chen
,
B.
,
Hu
,
Y.
,
Li
,
B.
,
Gao
,
D.
, and
Fu
,
B.
,
2017
, “
Ensemble-Based Optimization of Interwell Connectivity in Heterogeneous Waterflooding Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
245
256
.
20.
Lorentzen
,
R. J.
,
Berg
,
A. M.
,
Naevdal
,
G.
, and
Vefring
,
E. H.
,
2006
, “
A New Approach For Dynamic Optimization of Waterflooding Problems
,”
Proceedings of the SPE Intelligent Energy Conference and Exhibition
,
Amsterdam, Netherlands
,
Apr. 11–13
, No. SPE 99690.
21.
Nwaozo
,
J.
,
2006
, “
Dynamic Optimization of a Water Flood Reservoir
,” Master’s thesis,
University of Oklahoma
,
Norman, OK
.
22.
Chen
,
Y.
,
Oliver
,
D. S.
, and
Zhang
,
D.
,
2009
, “
Efficient Ensemble-Based Closed-Loop Production Optimization
,”
SPE J.
,
14
(
4
), pp.
634
645
.
23.
Raniolo
,
S.
,
Dovera
,
L.
, and
Cominelli
,
A.
,
2013
, “
History Match and Polymer Injection Optimization in a Mature Field Using the Ensemble Kalman Filter
,”
Proceedings of the 17th European Symposium on Improved Oil Recovery
,
St. Petersburg, Russia
,
Apr. 16–18
.
24.
Fonseca
,
R. M.
,
Kahrobaei
,
S. S.
,
van Gastel
,
L. J. T.
,
Leeuwenburgh
,
O.
, and
Jansen
,
J. D.
,
2015
, “
Quantification of the Impact of Ensemble Size on the Quality of an Ensemble Gradient using Principles of Hypothesis Testing
,”
Proceedings of the SPE Reservoir Simulation Symposium
,
Houston, TX
,
Feb. 23–25
, No. SPE 173236.
25.
Fonseca
,
R. M.
,
Leeuwenburgh
,
O.
,
Rossa
,
E. D.
,
den Hof
,
P. M. J. V.
, and
Jansen
,
J. D.
,
2015
, “
Ensemble-Based Multi-Objective Optimization of On-Off Control Devices Under Geological Uncertainty
,”
Proceedings of the SPE Reservoir Simulation Symposium
,
Houston, TX
,
Feb. 23–25
, No. SPE 173268.
26.
Peters
,
E.
,
Arts
,
R.
,
Brouwer
,
G.
, and
Geel
,
C.
,
2009
, “
Results of the Brugge Benchmark Study for Flooding Optimisation and History Matching
,”
Proceedings of the SPE Reservoir Simulation Symposium
,
Feb. 2–4
, No. SPE 119094.
27.
Do
,
S. T.
,
Forouzanfar
,
F.
, and
Reynolds
,
A. C.
,
2012
, “
Estimation of Optimal Well Controls Using the Augmented Lagrangian Function With Approximate Derivatives
,”
IFAC Proc. Vol.
,
45
(
8
), pp.
1
6
.
28.
Boggs
,
P. T.
, and
Tolle
,
J. W.
,
2000
, “
Sequential Quadratic Programming for Large-Scale Nonlinear Optimization
,”
J. Comput. Appl. Math.
,
124
(
1–2
), pp.
123
137
.
29.
Fletcher
,
R.
,
Leyffer
,
S.
,
Toint
,
P. L.
et al
,
2006
, “
A Brief History of Filter Methods
,”
Argonne National Laboratory, Mathematics and Computer Science Division
, Preprint ANL/MCS-P1372-0906, p.
36
.
30.
Oliver
,
D. S.
,
Reynolds
,
A. C.
, and
Liu
,
N.
,
2008
,
Inverse Theory for Petroleum Reservoir Characterization and History Matching
,
Cambridge University Press
,
Cambridge, UK
.
31.
Al-Khalifa
,
M. T.
,
Mishkhes
,
A. T.
,
Baruah
,
K. N.
, and
al Otaibi
,
N. M.
,
2013
, “
Smart Well Completion Utilization to Optimize Production in MRC Well—A Case Study
,”
Proceedings of the SPE Saudi Arabia Section Annual Technical Symposium and Exhibition
,
Khobar, Saudi Arabia
,
May 19–22
, No. SPE 168108.
32.
Chen
,
Y.
, and
Oliver
,
D.
,
2010
, “
Ensemble-Based Closed-Loop Optimization Applied to Brugge Field
,”
SPE Reservoir Eval. Eng.
,
13
(
1
), pp.
56
71
.
33.
Chen
,
C.
,
Li
,
G.
, and
Reynolds
,
A. C.
,
2010
, “
Closed-Loop Reservoir Management on the Brugge Test Case
,”
Comput. Geosci.
,
14
(
4
), pp.
691
703
.
34.
Guo
,
Z.
,
Reynolds
,
A. C.
, and
Zhao
,
H.
,
2018
, “
A Physics-Based Data-Driven Model for History Matching, Prediction, and Characterization of Waterflooding Performance
,”
SPE J.
,
23
(
2
), pp.
367
395
.
35.
Guo
,
Z.
,
Reynolds
,
A. C.
, and
Zhao
,
H.
,
2018
, “
Waterflooding Optimization With the Insim-Ft Data-Driven Model
,”
Comput. Geosci.
22
(
3
), pp.
745
761
.
36.
CMG
,
2009
,
User’s Guide: IMEX. Advanced Oil/Gas Reservoir Simulator
,
Calgary, Canada
You do not currently have access to this content.