Abstract

In recent years, drilling digitalization and automation have advanced from being automation of rig floor equipment to an idea that is starting to be applied to entire drilling processes. However it is very costly in terms of field testing and validating developed novel technologies. To address this limitation, we take advantage of a laboratory drilling rig to run a large number of drilling tests. By introducing various drilling scenarios while drilling different formations using various combinations of the operational parameters, we could be able to collect a large amount of data for data-driven methods development and testing. The main study in this article is to develop machine learning algorithms for identifying abnormal drilling and test these algorithms on the rig based on the responses of the rig sensors in real-time operations. The idea also helps us determine what the most important parameters or their combinations for drilling incidents detection are, which we could pay greatest attention to make right decisions with the help of drilling data during real-time operations.

References

1.
Pastusek
,
P.
,
Payette
,
G.
,
Shor
,
R.
,
Cayeux
,
E.
,
Aarsnes
,
U. J.
,
Hedengren
,
J.
,
Menand
,
S.
,
Macpherson
,
J.
,
Gandikota
,
R.
,
Behounek
,
M.
,
Illerhaus
,
R.
, and
Liu
,
Y.
,
2019
, “
Creating Open Source Models, Test Cases, and Data for Oilfield Drilling Challenges
,”
SPE/IADC International Drilling Conference and Exhibition
,
The Hague, The Netherlands
,
Mar. 5–7
.
2.
Agwu
,
O. E.
,
Akpabio
,
J. U.
,
Alabi
,
S. B.
, and
Dosunmu
,
A.
,
2018
, “
Artificial Intelligence Techniques and Their Applications in Drilling Fluid Engineering: A Review.
,”
J. Pet. Sci. Eng.
,
167
, pp.
300
315
.
3.
Ahmed
,
O. S.
,
Adeniran
,
A. A.
, and
Samsuri
,
A.
,
2019
, “
Computational Intelligence Based Prediction of Drilling Rate of Penetration: A Comparative Study
,”
J. Pet. Sci. Eng.
,
172
, pp.
1
12
.
4.
Balaji
,
K.
,
Rabiei
,
M.
,
Suicmez
,
V.
,
Canbaz
,
C.
,
Agharzeyva
,
Z.
,
Tek
,
S.
, and
Bulut
,
U.
,
2018
, “
Status of Data-Driven Methods and Their Applications in Oil and Gas Industry
,”
SPE Europec Featured at 80th EAGE Conference and Exhibition
,
Copenhagen, Denmark
,
June
.
5.
Bello
,
O.
,
Teodoriu
,
C.
,
Yaqoob
,
T.
,
Oppelt
,
J.
,
Holzmann
,
J.
, and
Obiwanne
,
A.
,
2016
, “
Application of Artificial Intelligence Techniques in Drilling System Design and Operations: A State of the Art Review and Future Research Pathways
,”
SPE Nigeria Annual International Conference and Exhibition
,
Nigeria
,
Aug. 2–4
, Society of Petroleum Engineers.
6.
Eskandarian
,
S.
,
Bahrami
,
P.
, and
Kazemi
,
P.
,
2017
, “
A Comprehensive Data Mining Approach to Estimate the Rate of Penetration: Application of Neural Network, Rule Based Models and Feature Ranking
,”
J. Pet. Sci. Eng.
,
156
, pp.
605
615
.
7.
Hajizadeh
,
Y.
,
2016
, “
Machine Learning in Oil and Gas; A Swot Analysis Approach
,”
J. Pet. Sci. Eng.
,
176
, pp.
661
663
.
8.
Hegde
,
C.
,
Daigle
,
H.
,
Millwater
,
H.
, and
Gray
,
K.
,
2017
, “
Analysis of Rate of Penetration (ROP) Prediction in Drilling Using Physics-Based and Data-Driven Models
,”
J. Pet. Sci. Eng.
,
159
, pp.
295
306
.
9.
Pollock
,
J.
,
Stoecker-Sylvia
,
Z.
,
Veedu
,
V.
,
Panchal
,
N.
, and
Elshahawi
,
H.
,
2018
, “
Machine Learning for Improved Directional Drilling
,”
Offshore Technology Conference
,
Houston, TX
,
Apr. 30–May 3
.
10.
Rahmanifard
,
H.
, and
Plaksina
,
T.
,
2018
, “
Application of Artificial Intelligence Techniques in the Petroleum Industry: A Review.
J. Pet. Sci. Eng.
,
167
, pp.
300
315
.
11.
Soares
,
C.
, and
Gray
,
K.
,
2019
, “
Real-Time Predictive Capabilities of Analytical and Machine Learning Rate of Penetration (ROP) Models
,”
J. Pet. Sci. Eng.
,
172
, pp.
934
959
.
12.
Barbosa
,
L. F. F. M.
,
Nascimento
,
A.
,
Mathias
,
M. H.
, and
Carvalho
,
J. A.
,
2019
, “
Machine Learning Methods Applied to Drilling Rate of Penetration Prediction and Optimization—A Review
,”
J. Pet. Sci. Eng.
,
183
, pp.
1
20
.
13.
Løken
,
E.
,
Trulsen
,
A.
,
Holsaeter
,
A. M.
,
Wiktorski
,
E.
, and
Sui
,
D.
,
2018
, “
Design Principles Behind the Construction of an Autonomous Laboratory-Scale Drilling Rig
,”
IFAC-OOGP.
,
51
(
8
), pp.
62
69
.
14.
Løken
,
E.
, and
Løkkevik
,
J.
,
2019
, “
Optimization of an Intelligent Autonomous Drilling Rig: Testing and Implementation of Machine Learning and Control Algorithms for Formation Classification, Downhole Vibrations Management and Directional Drilling
,”
Master thesis
,
University of Stavanger
,
Stavanger, Norway
.
15.
Løken
,
E.
,
Geekiyanage
,
S.
, and
Sui
,
D.
,
2019
, “
Small-Scale Autonomous Drilling Development for Drilling Digitalization
,”
Oil Gas Eur. Mag.
16.
Khadisov
,
M. A.
,
Hagen
,
H.
,
Jakobsen
,
A.
, and
Sui
,
D.
,
2019
, “
Developments and Experimental Tests on a Laboratory-Scale Drilling Automation System
,”
J. Petrlo. Expl. Prod. Technol.
,
10
, pp.
605
621
.
17.
Løken
,
E.
,
Løkkevik
,
J.
, and
Sui
,
D.
,
2020
, “
Data-Driven Approaches Tests on a Laboratory Drilling System
,”
J. Petrlo. Expl. Prod. Technol.
,
10
, pp.
3043
3055
.
18.
Geekiyanage
,
S. C. H.
,
Tunkiel
,
A.
, and
Sui
,
D.
,
2020
, “
Drilling Data Quality Improvement and Information Extraction With Case Studies
,”
J. Pet. Explor. Prod. Technol.
,
11
, pp.
819
837
.
19.
Deep
,
R.
,
2005
,
Probability and Statistics With Integrated Software Routines
,
Academic Press
, pp.
1
686
.
20.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2016
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
, 2nd ed.,
Springer
.
21.
Kamiński
,
B.
,
Jakubczyk
,
M.
, and
Szufel
,
P.
,
2017
, “
A Framework for Sensitivity Analysis of Decision Trees
,”
Centr. Eur. J. Oper. Res.
,
26
, pp.
135
159
.
22.
Altman
,
N. S.
,
1992
, “
An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression
,”
Am. Stat.
,
46
(
3
), pp.
175
185
.
23.
Hartigan
,
J. A.
, and
Wong
,
M. A.
,
1979
, “
Algorithm AS 136: A K-Means Clustering Algorithm
,”
J. Roy. Stat. Soc. Series C (Appl. Stat.
),
28
(
1
), pp.
100
108
.
24.
He
,
Y.
,
Tan
,
H.
,
Luo
,
W.
,
Mao
,
H.
,
Ma
,
D.
,
Feng
,
S.
, and
Fan
,
J.
,
2011
, “
Mr-Dbscan: An Efficient Parallel Density-Based Clustering Algorithm Using Mapreduce
,”
IEEE 17th International Conference on Parallel and Distributed Systems
,
Tainan, Taiwan
,
Dec. 7–9
, pp.
473
480
.
25.
Cover
,
T.
, and
Hart
,
P.
,
1967
, “
Nearest Neighbor Pattern Classification
,”
IEEE Trans. Inf. Theory
,
13
(
1
), pp.
21
27
.
26.
Mucherino
,
A.
, and
Pardalos
,
P. M.
,
2009
,
Data Mining in Agriculture Neighbor Classification, Springer Optimization and Its Applications
, Vol.
34
,
Springer
,
New York
, pp.
83
84
.
27.
Xu
,
Y.
,
2013
, “
Coarse to Fine K Nearest Neighbor Classifier
,”
Pattern Recogn. Lett.
,
34
(
9
), pp.
980
986
.
28.
van der Aalst
,
W.
,
2016
,
Process Mining: Data Science in Action
,
Springer
,
Berlin
.
29.
Celebi
,
M. E.
,
2015
,
Partitional Clustering Algorithms
,
Springer
,
Cham
.
30.
Rand
,
W. M.
,
1971
, “
Objective Criteria for the Evaluation of Clustering Methods
,”
J. Am. Stat. Assoc.
,
66
(
336
), pp.
846
850
.
You do not currently have access to this content.