Abstract

CO2-assisted co-gasification of binary mixtures of pinewood pellets (PWP) and two kinds of plastics polyethylene-terephthalate (PET) and high-density polyethylene (HDPE) were examined at 800 °C using a fixed bed reactor. Evolutionary behavior and yields of CO, H2, and CmHn were investigated for both individual feedstock and binary mixtures of biomass and plastic. Synergetic effects in co-gasification of mixtures under CO2 atmosphere were analyzed and compared between experimental and calculated results. The results showed that PET and HDPE although had similar behavior in gasification, they provided many different characteristics on blending with solid biomass in CO2-assisted co-gasification. Both PWP–PET mixture and PWP–HDPE mixture showed positive effects on hydrocarbons yield and negative effects on solid yield. For PWP–PET mixture, H2 yield showed no change compared to the calculated value; however, CO yield and CO2 consumption showed negative effects due to the blocked porosity of solid biomass from the softened PET. For PWP–HDPE mixture, H2 yield showed significant enhancement compared to the calculated value, and CO yield showed slight enhancement but a slight reduction in CO2 consumption. It was also observed that the experimental CmHn yields obtained from biomass-plastics mixtures were of higher values than the calculated values. The morphologies of solid residues for PWP, PET, PWP–PET, and PWP–HDPE were analyzed and taken as a supplement to explain the synergetic effects in the co-gasification process. These results provide an insight into energy recovery and waste treatment potential for both biomass and waste plastic using thermochemical conversion.

References

1.
Mayer
,
F.
,
Bhandari
,
R.
, and
Gäth
,
S.
,
2019
, “
Critical Review on Life Cycle Assessment of Conventional and Innovative Waste-to-Energy Technologies
,”
Sci. Total Environ.
,
672
, pp.
708
721
. 10.1016/j.scitotenv.2019.03.449
2.
Demirbas
,
A.
,
2005
, “
Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues
,”
Prog. Energy Combust. Sci.
,
31
(
2
), pp.
171
192
. 10.1016/j.pecs.2005.02.002
3.
Biomass and the Environment—U.S. Energy Information Administration (EIA)
,” https://www.eia.gov/energyexplained/biomass/biomass-and-the-environment.php, Accessed November 12, 2019.
4.
Herdem
,
M. S.
,
Lorena
,
G.
, and
Wen
,
J. Z.
,
2019
, “
Simulation and Performance Investigation of a Biomass Gasification System for Combined Power and Heat Generation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112002
. 10.1115/1.4043697
5.
Islam
,
S.
, and
Dincer
,
I.
,
2018
, “
A Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092002
. 10.1115/1.4039873
6.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2014
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021101
. 10.1115/1.4025286
7.
Wang
,
Z.
,
Lei
,
T.
,
Yan
,
X.
,
Chen
,
G.
,
Xin
,
X.
,
Yang
,
M.
,
Guan
,
Q.
,
He
,
X.
, and
Gupta
,
A. K.
,
2019
, “
Common Characteristics of Feedstock Stage in Life Cycle Assessments of Agricultural Residue-Based Biofuels
,”
Fuel
,
253
, pp.
1256
1263
. https://doi.org/10.1016/j.fuel.2019.05.105
8.
Hu
,
M.
,
Wang
,
X.
,
Chen
,
J.
,
Yang
,
P.
,
Liu
,
C.
,
Xiao
,
B.
, and
Guo
,
D.
,
2017
, “
Kinetic Study and Syngas Production From Pyrolysis of Forestry Waste
,”
Energy Convers. Manag.
,
135
, pp.
453
462
. 10.1016/j.enconman.2016.12.086
9.
Lei
,
T.
,
Wang
,
Z.
,
Li
,
Z.
,
Xu
,
J.
,
He
,
X.
, and
Zhu
,
J.
,
2013
, “
A Biomass Briquetting Fuel Machine and Its Large-Scale Operation System
,”
J. Renew. Sustain. Energy
,
5
(
1
), p.
013107
. 10.1063/1.4781089
10.
Wang
,
Z.
,
Lei
,
T.
,
Yang
,
M.
,
Li
,
Z.
,
Qi
,
T.
,
Xin
,
X.
,
He
,
X.
,
Ajayebi
,
A.
, and
Yan
,
X.
,
2017
, “
Life Cycle Environmental Impacts of Cornstalk Briquette Fuel in China
,”
Appl. Energy
,
192
, pp.
83
94
. 10.1016/j.apenergy.2017.01.071
11.
Gu
,
L.
, and
Ozbakkaloglu
,
T.
,
2016
, “
Use of Recycled Plastics in Concrete: A Critical Review
,”
Waste Manag.
,
51
, pp.
19
42
. 10.1016/j.wasman.2016.03.005
12.
Lopez
,
G.
,
Artetxe
,
M.
,
Amutio
,
M.
,
Alvarez
,
J.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2018
, “
Recent Advances in the Gasification of Waste Plastics. A Critical Overview
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
576
596
. 10.1016/j.rser.2017.09.032
13.
The U.S. Environmental Protection Agency (EPA)
,
2019
, “
Assessing Trends in Material Generation, Recycling, Composting, Combustion With Energy Recovery and Landfilling in the United States
,” Advancing Sustainable Materials Management: 2017 Fact Sheet.
14.
The U.S. Environmental Protection Agency (EPA)
,
2018
, “
Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Landfilling in the United States
,” Advancing Sustainable Materials Management: 2015 Fact Sheet.
15.
Balcom
,
P.
, and
Carey
,
V. P.
,
2020
, “
Exergy-Based Sustainability Analysis for Tile Production From Waste Plastics in Uganda
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050905
. 10.1115/1.4045540
16.
Chemical Retrieval on the Web
, “
Polymer Properties Database: Most Common Thermoplastics
,” http://polymerdatabase.com/polymer%20classes/Thermoplastics.html, Accessed December 4, 2019.
17.
Koshti
,
R.
,
Mehta
,
L.
, and
Samarth
,
N.
,
2018
, “
Biological Recycling of Polyethylene Terephthalate: A Mini-Review
,”
J. Polym. Environ.
,
26
(
8
), pp.
3520
3529
. 10.1007/s10924-018-1214-7
18.
Kuczenski
,
B.
, and
Geyer
,
R.
,
2010
, “
Material Flow Analysis of Polyethylene Terephthalate in the US, 1996–2007
,”
Resour. Conserv. Recycl.
,
54
(
12
), pp.
1161
1169
. 10.1016/j.resconrec.2010.03.013
19.
Chen
,
L.
,
Wang
,
S.
,
Meng
,
H.
,
Wu
,
Z.
, and
Zhao
,
J.
,
2017
, “
Study on Gas Products Distributions During Fast Co-Pyrolysis of Paulownia Wood and PET at High Temperature
,”
Energy Procedia
,
105
, pp.
391
397
. 10.1016/j.egypro.2017.03.331
20.
Önal
,
E.
,
Uzun
,
B. B.
, and
Pütün
,
A. E.
,
2014
, “
Bio-Oil Production via Co-Pyrolysis of Almond Shell as Biomass and High Density Polyethylene
,”
Energy Convers. Manag.
,
78
, pp.
704
710
. 10.1016/j.enconman.2013.11.022
21.
Shahabuddin
,
M.
,
Alam
,
M. T.
,
Krishna
,
B. B.
,
Bhaskar
,
T.
, and
Perkins
,
G.
,
2020
, “
A Review on the Production of Renewable Aviation Fuels From the Gasification of Biomass and Residual Wastes
,”
Bioresour. Technol.
,
312
, p.
123596
. 10.1016/j.biortech.2020.123596
22.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
. 10.1115/1.4039601
23.
Singh
,
P.
,
Déparrois
,
N.
,
Burra
,
K. G.
,
Bhattacharya
,
S.
, and
Gupta
,
A. K.
,
2019
, “
Energy Recovery From Cross-Linked Polyethylene Wastes Using Pyrolysis and CO2 Assisted Gasification
,”
Appl. Energy
,
254
, pp.
113722
. 10.1016/j.apenergy.2019.113722
24.
Lahijani
,
P.
,
Zainal
,
Z. A.
,
Mohammadi
,
M.
, and
Mohamed
,
A. R.
,
2015
, “
Conversion of the Greenhouse Gas CO2 to the Fuel Gas CO via the Boudouard Reaction: A Review
,”
Renew. Sustain. Energy Rev.
,
41
, pp.
615
632
. 10.1016/j.rser.2014.08.034
25.
Ahmed
,
I. I.
,
Nipattummakul
,
N.
, and
Gupta
,
A. K.
,
2011
, “
Characteristics of Syngas From Co-gasification of Polyethylene and Woodchips
,”
Appl. Energy
,
88
(
1
), pp.
165
174
. 10.1016/j.apenergy.2010.07.007
26.
Ahmed
,
I.
,
Nipattummakul
,
N.
, and
Gupta
,
A.
,
2010
, “
Evolution of Syngas From Co-Gasification of Polyethylene and Woodchips
,”
Proceedings of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Nashville, TN
,
July 25–28
,
American Institute of Aeronautics and Astronautics
, Paper No. AIAA_2010-6509.
27.
Moghadam
,
R. A.
,
Yusup
,
S.
,
Uemura
,
Y.
,
Chin
,
B. L. F.
,
Lam
,
H. L.
, and
Al Shoaibi
,
A.
,
2014
, “
Syngas Production From Palm Kernel Shell and Polyethylene Waste Blend in Fluidized Bed Catalytic Steam Co-Gasification Process
,”
Energy
,
75
, pp.
40
44
. 10.1016/j.energy.2014.04.062
28.
Alvarez
,
J.
,
Kumagai
,
S.
,
Wu
,
C.
,
Yoshioka
,
T.
,
Bilbao
,
J.
,
Olazar
,
M.
, and
Williams
,
P. T.
,
2014
, “
Hydrogen Production From Biomass and Plastic Mixtures by Pyrolysis-Gasification
,”
Int. J. Hydrog. Energy
,
39
(
21
), pp.
10883
10891
. 10.1016/j.ijhydene.2014.04.189
29.
Basha
,
M. H.
,
Sulaiman
,
S. A.
, and
Uemura
,
Y.
,
2020
, “
Co-gasification of Palm Kernel Shell and Polystyrene Plastic: Effect of Different Operating Conditions
,”
J. Energy Inst.
,
93
(
3
), pp.
1045
1052
. 10.1016/j.joei.2019.09.005
30.
Arregi
,
A.
,
Amutio
,
M.
,
Lopez
,
G.
,
Artetxe
,
M.
,
Alvarez
,
J.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2017
, “
Hydrogen-Rich Gas Production by Continuous Pyrolysis and In-line Catalytic Reforming of Pine Wood Waste and HDPE Mixtures
,”
Energy Convers. Manag.
,
136
, pp.
192
201
. 10.1016/j.enconman.2017.01.008
31.
Pinto
,
F.
,
Franco
,
C.
,
André
,
R. N.
,
Miranda
,
M.
,
Gulyurtlu
,
I.
, and
Cabrita
,
I.
,
2002
, “
Co-gasification Study of Biomass Mixed With Plastic Wastes
,”
Fuel
,
81
(
3
), pp.
291
297
. 10.1016/S0016-2361(01)00164-8
32.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “
Synergistic Effects in Steam Gasification of Combined Biomass and Plastic Waste Mixtures
,”
Appl. Energy
,
211
(
1
), pp.
230
236
. 10.1016/j.apenergy.2017.10.130
33.
China National Standards and Codes
,
2008
,
GB/T 212-2008 Proximate analysis of coal. Beijing: Standardization Administration of the People's Republic of China
.
34.
China National Standards and Codes
,
2015
,
GB/T 31391-2015 Ultimate analysis of coal. Beijing: Standardization Administration of the People's Republic of China
.
35.
China National Standards and Codes
,
2008
,
GB/T 213-2008 Determination of calorific value of coal. Beijing: Standardization Administration of the People's Republic of China
.
36.
Policella
,
M.
,
Wang
,
Z.
,
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2019
, “
Characteristics of Syngas From Pyrolysis and CO2-Assisted Gasification of Waste Tires
,”
Appl. Energy
,
254
, p.
113678
. 10.1016/j.apenergy.2019.113678
37.
Wang
,
Z.
,
Burra
,
K. G.
,
Zhang
,
M.
,
Li
,
X.
,
He
,
X.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2020
, “
Syngas Evolution and Energy Efficiency in CO2-Assisted Gasification of Pine Bark
,”
Appl. Energy
,
269
, p.
114996
. 10.1016/j.apenergy.2020.114996
38.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2019
, “
Co-Gasification Characteristics of Waste Tire and Pine Bark Mixtures in CO2 Atmosphere
,”
Fuel
,
257
, p.
116025
. 10.1016/j.fuel.2019.116025
39.
Wang
,
Z.
,
Burra
,
K. G.
,
Zhang
,
M.
,
Li
,
X.
,
Policella
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2020
, “
Co-pyrolysis of Waste Tire and Pine Bark for Syngas and Char Production
,”
Fuel
,
274
, p.
117878
. 10.1016/j.fuel.2020.117878
40.
Chin
,
B. L. F.
,
Yusup
,
S.
,
Al Shoaibi
,
A.
,
Kannan
,
P.
,
Srinivasakannan
,
C.
, and
Sulaiman
,
S. A.
,
2014
, “
Kinetic Studies of Co-Pyrolysis of Rubber Seed Shell With High Density Polyethylene
,”
Energy Convers. Manag.
,
87
, pp.
746
753
. 10.1016/j.enconman.2014.07.043
41.
Rezaei
,
P. S.
,
Oh
,
D.
,
Hong
,
Y.
,
Kim
,
Y.-M.
,
Jae
,
J.
,
Jung
,
S.-C.
,
Jeon
,
J.-K.
, and
Park
,
Y.-K.
,
2017
, “
In-situ Catalytic Co-pyrolysis of Yellow Poplar and High-Density Polyethylene Over Mesoporous Catalysts
,”
Energy Convers. Manag.
,
151
, pp.
116
122
. 10.1016/j.enconman.2017.08.073
42.
García-Bacaicoa
,
P.
,
Mastral
,
J. F.
,
Ceamanos
,
J.
,
Berrueco
,
C.
, and
Serrano
,
S.
,
2008
, “
Gasification of Biomass/High Density Polyethylene Mixtures in a Downdraft Gasifier
,”
Bioresour. Technol.
,
99
(
13
), pp.
5485
5491
. 10.1016/j.biortech.2007.11.003
43.
Biswas
,
A. K.
,
Rudolfsson
,
M.
,
Broström
,
M.
, and
Umeki
,
K.
,
2014
, “
Effect of Pelletizing Conditions on Combustion Behaviour of Single Wood Pellet
,”
Appl. Energy
,
119
, pp.
79
84
. 10.1016/j.apenergy.2013.12.070
44.
Brems
,
A.
,
Baeyens
,
J.
,
Vandecasteele
,
C.
, and
Dewil
,
R.
,
2011
, “
Polymeric Cracking of Waste Polyethylene Terephthalate to Chemicals and Energy
,”
J. Air Waste Manag. Assoc.
,
61
(
7
), pp.
721
731
. 10.3155/1047-3289.61.7.721
You do not currently have access to this content.