Abstract

The rock acoustic data that provide important information about the formation petrophysics and geomechanics are highly needed to design the wells drilling programs, in addition to, reservoir stimulation and field development plans. The acoustic data acquisition through the conventional methods in the petroleum industry either by logging or lab measurements has many drawbacks as the cost of well log operations and the job time. Determining the acoustic data through the common correlations did not provide high accuracy, and there are limitations for using these correlations. The new trend in the petroleum industry with the fourth industrial revolution is to employ machine learning for such problems to provide effective solutions. Therefore, this study utilized the machine learning for developing prediction models for acoustic compressional and shear slowness using adaptive neuro-fuzzy inference system and support vector machines tools. The study presents novel contributions for predicting acoustic slowness from only the surface drilling data while drilling different formations of composite lithology (limestone, sandstone, shale, and carbonate). The study utilized real field data (2800 data points) to build and test the two models through deep sensitivity analysis, in addition, further testing for the models by another 2800 data points from the same field for the validation phase. The obtained results ensured the capability of machine learning for predicting the acoustic slowness with high accuracy as adaptive neuro-fuzzy inference system (ANFIS) achieved a correlation coefficient (R) higher than 0.98 and error less than 1.43% as average absolute percentage error (AAPE) between the actual and predicted acoustic values. Adaptive neuro-fuzzy inference model showed the highest accuracy during the model training as R was 1.0; in addition, R for testing results showed 0.98, and AAPE ranged from 0.25% to 0.92%. The validation phase ensured the high performance for the acoustic prediction of the developed models as R is higher than 0.98 and AAPE lower than 1.46%. The machine learning applications through the developed models for the acoustic data will provide cost and time savings for acoustic data acquisition for the field applications.

References

1.
Moos
,
D.
,
Peska
,
P.
,
Finkbeiner
,
T.
, and
Zoback
,
M.
,
2003
, “
Comprehensive Wellbore Stability Analysis Utilizing Quantitative Risk Assessment
,”
J. Pet. Sci. Eng.
,
38
(
3–4
), pp.
97
109
.
2.
Asquith
,
G.
, and
Gibson
,
C.
,
2004
,
Basic Well Log Analysis for Geologists
,
The American Association of Petroleum Geologists (AAPG)
,
Tulsa, OK
.
3.
Chang
,
C.
,
Zoback
,
M. D.
, and
Khaksar
,
A.
,
2006
, “
Empirical Relations Between Rock Strength and Physical Properties in Sedimentary Rocks
,”
J. Pet. Sci. Eng.
,
51
(
3–4
), pp.
223
237
.
4.
Oloruntobi
,
O.
,
Adedigba
,
S.
,
Khan
,
F.
,
Chunduru
,
R.
, and
Butt
,
S.
,
2018
, “
Overpressure Prediction Using the Hydro-Rotary Specific Energy Concept
,”
J. Pet. Sci. Eng.
,
55
, pp.
243
253
.
5.
Reichel
,
N.
,
Evans
,
M.
,
Allioli
,
F.
,
Mauborgne
,
M.-L.
,
Nicoletti
,
L.
,
Haranger
,
F.
,
Stoller
,
C.
,
Schlumberger
,
V. C.
,
El
,
E.
, and
Sipetrol
,
H.
,
2012
, “
Neutron-Gamma Density (Ngd): Principles, Field Test Results And Log Quality Control Of A Radioisotope-Free Bulk Density Measurement
,”
SPWLA 53rd Annual Logging Symposium, Society of Petrophysicists and Well-Log Analysts
,
Cartagena, Colombia
, pp.
1
15
.
6.
Moore
,
W. R.
,
Zee Ma
,
Y.
,
Urdea
,
J.
, and
Bratton
,
T.
,
2011
, “
Uncertainty Analysis in Well-Log and Petrophysical Interpretations
,”
AAPG Mem.
,
96
, pp.
17
28
.
7.
Zee Ma
,
Y.
,
2011
, “
Uncertainty Analysis in Reservoir Characterization and Management: How Much Should We Know About What We Don’t Know?
,”
AAPG Mem.
,
96
, pp.
1
15
.
8.
Grana
,
D.
,
Verma
,
S.
,
Pafeng
,
J.
,
Lang
,
X.
,
Sharma
,
H.
,
Wu
,
W.
,
McLaughlin
,
F.
, et al
,
2017
, “
A Rock Physics and Seismic Reservoir Characterization Study of the Rock Springs Uplift, a Carbon Dioxide Sequestration Site in Southwestern Wyoming
,”
Int. J. Greenhouse Gas Control
,
63
(
May
), pp.
296
309
.
9.
Dvorkin
,
J.
,
Gutierrez
,
M. A.
, and
Grana
,
D.
,
2014
,
Seismic Reflections of Rock Properties
,
Cambridge University Press
,
Cambridge
.
10.
Avseth
,
P.
,
Mukerji
,
T.
,
Mavko
,
G.
, and
Dvorkin
,
J.
,
2010
, “
Rock-Physics Diagnostics of Depositional Texture, Diagenetic Alterations, and Reservoir Heterogeneity in High-Porosity Siliciclastic Sediments and Rocks—A Review of Selected Models and Suggested Work Flows
,”
Geophysics
,
75
(
5
), pp.
75A31
75A47
.
11.
Ellis
,
D.
,
2003
, “
Formation Porosity Estimation From Density Logs
,”
Petrophysics
,
44
(
5
), pp.
306
316
.
12.
Raymer
,
L. L.
,
Hunt
,
E. R.
, and
Gardner
,
J. S.
,
1980
, “
An Improved Sonic Transit Time-to-Porosity Transform
,”
SPWLA Annual Logging Symposium
,
Lafayette, IN
,
July
, pp.
1
13
.
13.
Kane
,
J. A.
, and
Jennings
,
J. W.
,
2005
, “
A Method to Normalize Log Data by Calibration to Large-Scale Data Trends
,”
Proceedings—SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
October
. pp.
2291
2302
.
14.
Hamada
,
G. M.
,
2004
, “
Reservoir Fluids Identification Using Vp /Vs Ratio
,”
Oil Gas Sci. Technol.—Rev. IFP
,
59
(
6
), pp.
649
654
.
15.
Bailey
,
T.
,
2021
, “
An Empirical Vp/Vs Shale Trend for the Kimmeridge Clay of the Central North Sea
,”
74th EAGE Conference & Exhibition Incorporating SPE EUROPEC 2012
,
Copenhagen, Denmark
,
June
, pp.
4
7
.
16.
Eastwood
,
R. L.
, and
Castagna
,
J. P.
,
1983
, “
Basis for Interpretation of Vp/Vs Ratios in Complex Lithologies
,”
SPWLA 24th Annual Logging Symposium, 1974
,
Calgary, Alberta
,
June
, pp.
1
17
.
17.
Asoodeh
,
M.
, and
Bagheripour
,
P.
,
2012
, “
Prediction of Compressional, Shear, and Stoneley Wave Velocities From Conventional Well Log Data Using a Committee Machine with Intelligent Systems
,”
Rock Mech. Rock Eng.
,
45
(
1
), pp.
45
63
.
18.
Onalo
,
D.
,
Adedigba
,
S.
,
Khan
,
F.
,
James
,
L. A.
, and
Butt
,
S. D.
,
2020
, “
Data Driven Model for Sonic Well Log Prediction
,”
J Petrol Explor Prod Technol
,
10
, pp.
1429
1447
.
19.
Hossain
,
Z.
,
Mukerji
,
T.
, and
Fabricius
,
I. L.
,
2012
, “
Vp-Vs Relationship and Amplitude Variation With Offset Modelling of Glauconitic Greensand‡
,”
Geophys. Prospect.
,
60
(
1
), pp.
117
137
.
20.
Potter
,
C. C.
, and
Foltinek
,
D. S.
,
1997
, “
Formation Elastic Parameters by Deriving S-Wave Velocity Logs
,”
CREWES Research Report
,
9
, pp.
10/1
13
.
21.
Carroll
,
R. D.
,
1969
, “
The Determination of the Acoustic Parameters of Volcanic Rocks From Compressional Velocity Measurements
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
6
(
6
), pp.
557
579
.
22.
Castagna
,
J. P.
,
Batzle
,
M. L.
, and
Eastwood
,
R. L.
,
1985
, “
Relationships Between Compressional-Wave and Shear-Wave Velocities in Clastic Silicate Rocks
,”
Geophysics
,
50
(
4
), pp.
571
581
.
23.
Brocher
,
T. M.
,
2005
, “
Empirical Relations Between Elastic Wavespeeds and Density in the Earth’s Crust
,”
Bull. Seismol. Soc. Am.
,
95
(
6
), pp.
2081
2092
.
24.
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2020
, “
Rock Drillability Intelligent Prediction for a Complex Lithology Using Artificial Neural Network
,”
Society of Petroleum Engineers—Abu Dhabi International Petroleum Exhibition and Conference 2020, ADIP 2020
,
Abu Dhabi
,
November
.
25.
Al-Abduljabbar
,
A.
,
Gamal
,
H.
, and
Elkatatny
,
S.
,
2020
, “
Application of Artificial Neural Network to Predict the Rate of Penetration for S-Shape Well Profile
,”
Arabian J. Geosci.
,
13
(
16
), pp.
1
11
.
26.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Al-AbdulJabbar
,
A.
,
Moussa
,
T.
,
Gamal
,
H.
, and
Al Shehri
,
D.
,
2020
, “
Artificial Neural Networks Model for Prediction of the Rate of Penetration While Horizontally Drilling Carbonate Formations
,”
54th U.S. Rock Mechanics/Geomechanics Symposium
,
June
.
27.
Ahmed
,
A.
,
Ali
,
A.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2019
, “
New Artificial Neural Networks Model for Predicting Rate of Penetration in Deep Shale Formation
,”
Sustainability
,
11
(
22
), p.
6527
.
28.
Elkatatny
,
S.
,
2019
, “
Real-Time Prediction of the Rheological Properties of Water-Based Drill-In Fluid Using Artificial Neural Networks
,”
Sustainability
,
11
(
18
), p.
5008
.
29.
Alsabaa
,
A.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
New Correlations for Better Monitoring the All-Oil Mud Rheology by Employing Artificial Neural Networks
,”
Flow Meas. Instrum.
,
78
.
30.
Alsabaa
,
A.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2020
, “
Real-Time Prediction of Rheological Properties of Invert Emulsion Mud Using Adaptive Neuro-Fuzzy Inference System
,”
Sensors (Switzerland)
,
20
(
6
), p.
1669
.
31.
Alakbari
,
F. S.
,
Elkatatny
,
S.
, and
Baarimah
,
S. O.
,
2016
, “
Prediction of Bubble Point Pressure Using Artificial Intelligence AI Techniques
,”
SPE Middle East Artificial Lift Conference and Exhibition
,
Manama, Kingdom of Bahrain
,
November
, p.
9
.
32.
Mahdiani
,
M. R.
, and
Norouzi
,
M.
,
2018
, “
A New Heuristic Model for Estimating the Oil Formation Volume Factor
,”
Petroleum
,
4
(
3
), pp.
300
308
.
33.
Elkatatny
,
S.
,
Moussa
,
T.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2018
, “
A Self-Adaptive Artificial Intelligence Technique to Predict Oil Pressure Volume Temperature Properties
,”
Energies
,
11
(
12
), p.
3490
.
34.
Al Khalifah
,
H.
,
Glover
,
P. W. J.
, and
Lorinczi
,
P.
,
2020
, “
Permeability Prediction and Diagenesis in Tight Carbonates Using Machine Learning Techniques
,”
Mar. Pet. Geol.
,
112
, p.
104096
.
35.
Shokooh Saljooghi
,
B.
, and
Hezarkhani
,
A.
,
2015
, “
A New Approach to Improve Permeability Prediction of Petroleum Reservoirs Using Neural Network Adaptive Wavelet (Wavenet)
,”
J. Pet. Sci. Eng.
,
133
, pp.
851
861
.
36.
Elkatatny
,
S.
,
Tariq
,
Z.
,
Mahmoud
,
M.
,
Abdulazeez
,
A.
, and
Mohamed
,
I. M.
,
2016
, “
Application of Artificial Intelligent Techniques to Determine Sonic Time From Well Logs
,”
50th U.S. Rock Mechanics/Geomechanics Symposium
,
Houston, TX
,
June
, p.
11
.
37.
Gowida
,
A.
,
Elkatatny
,
S.
, and
Gamal
,
H.
,
2021
, “
Unconfined Compressive Strength (UCS) Prediction in Real-Time While Drilling Using Artificial Intelligence Tools
,”
Neural Comput. Appl.
,
7
, pp.
8043
8054
.
38.
Anemangely
,
M.
,
Ramezanzadeh
,
A.
, and
Mohammadi Behboud
,
M.
,
2019
, “
Geomechanical Parameter Estimation From Mechanical Specific Energy Using Artificial Intelligence
,”
J. Pet. Sci. Eng.
,
175
, pp.
407
429
.
39.
Gamal
,
H.
,
Alsaihati
,
A.
,
Elkatatny
,
S.
,
Haidary
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
Rock Strength Prediction in Real-Time While Drilling Employing Random Forest and Functional Network Techniques
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
093004
.
40.
Anemangely
,
M.
,
Ramezanzadeh
,
A.
, and
Tokhmechi
,
B.
,
2017
, “
Shear Wave Travel Time Estimation From Petrophysical Logs Using ANFIS-PSO Algorithm: A Case Study From Ab-Teymour Oilfield
,”
J. Nat. Gas Sci. Eng.
,
38
(
38
), pp.
373
387
.
41.
Anemangely
,
M.
,
Ramezanzadeh
,
A.
,
Amiri
,
H.
, and
Hoseinpour
,
S. A.
,
2019
, “
Machine Learning Technique for the Prediction of Shear Wave Velocity Using Petrophysical Logs
,”
J. Pet. Sci. Eng.
,
174
, pp.
306
327
.
42.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Abdulraheem
,
A.
, and
Fahd
,
K.
,
2016
, “
A New Artificial Intelligence Based Empirical Correlation to Predict Sonic Travel Time
,”
International Petroleum Technology Conference
,
Bangkok, Thailand
,
November
, p.
19
.
43.
Kanfar
,
R.
,
Shaikh
,
O.
,
Yousefzadeh
,
M.
, and
Mukerji
,
T.
,
2020
, “
Real-Time Well Log Prediction From Drilling Data Using Deep Learning
,”
International Petroleum Technology Conference
,
Dhahran, Kingdom of Saudi Arabia
,
January
.
44.
Ahmed
,
A.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Mohamed
,
I. M.
,
2018
, “
New Approach to Predict Fracture Pressure Using Functional Networks
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
April
, p.
12
.
45.
Gamal
,
H.
,
Elkatatny
,
S.
,
Alsaihati
,
A.
, and
Abdulraheem
,
A.
,
2021
, “
Intelligent Prediction for Rock Porosity While Drilling Complex Lithology in Real Time
,”
Computational Intelligence and Neurosciences
,
2021
, pp.
1
12
.
46.
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2020
, “
Effect of the Filtrate Fluid of Water-Based Mud on Sandstone Rock Strength and Elastic Moduli
,”
ACS Omega.
,
5
(
50
), pp.
32677
32688
. doi: 10.1021/acsomega.0c05067
47.
Elkatatny
,
S.
,
Tariq
,
Z.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
New Insights Into Porosity Determination Using Artificial Intelligence Techniques for Carbonate Reservoirs
,”
Petroleum
,
4
(
4
), pp.
408
418
.
48.
Abraham
,
A.
,
2005
,
Adaptation of Fuzzy Inference System Using Neural Learning
,
Springer
,
Berlin/Heidelberg
, pp.
53
83
.
49.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
, pp.
273
297
.
50.
Boser
,
B. E.
,
Guyon
,
I. M.
, and
Vapnik
,
V. N.
,
1992
, “
A Training Algorithm for Optimal Margin Classifiers
,”
Proceedings of the Fifth Annual Workshop on Computational Learning Theory—COLT ‘92
,
ACM Press
,
New York, NY
, pp.
144
152
.
51.
Aizerman
,
M. A.
,
Braverman
,
E. M.
, and
Rozonoer
,
L. I.
,
1964
, “
Theoretical Foundations of the Potential Function Method in Pattern Recognition
,”
Autom. Remote Control
,
25
, pp.
821
837
.
You do not currently have access to this content.