Abstract

Biofuels are considered as one of the best viable and inexhaustible alternatives to conventional diesel fuel. Alcohols have become very important and popular in the present scenario due to their peculiar fuel properties and production nature. This study examines the effect of n-amyl alcohol and exhaust gas recirculation of 10% and 20% on various engine characteristics of common rail direct injection (CRDI) compression ignition engine. The proportion of n-amyl alcohol varies from 5% to 25% in 5% step (by volume). The obtained results show that diesel/n-amyl alcohol blends decrease the mean gas temperature and cylinder pressure, which is 1.88% and 4.25% less at 75% load for n-amyl alcohol (25%) with conventional diesel fuel. The duration of combustion has shown a hike of 4.66 °CA for 25% n-amyl alcohol (at 75% load) compared to conventional diesel fuel. However, the cumulative heat release rate improved by 12.95% higher for 25% n-amyl alcohol at 75% load due to the extended delay in ignition. While n-amyl alcohol was used, the emission of nitrogen oxide emissions decreased considerably. However, the hydrocarbon (HC) (7–9%) and carbon monoxide (CO) (6–8%) emissions are increased due to inferior fuel properties like high latent heat evaporation of n-amyl alcohol. Compared with other blends, n-amyl alcohol (5%) produced results comparable to conventional diesel fuel, which is 3.6% higher in BSFC, 2.37% higher BTE, and 33.33% higher CO emissions 18.18% more in HC emission, and 17.55% less NOx emission. Without further modification, we can use 25% n-amyl alcohol in the combustion ignition engines. From this evidence, we can summarize that n-amyl alcohol is a biofuel that is both renewable and sustainable, and also it considerably reduces harmful nitrogen oxide emissions. The performance, if needed, can be improved by changing the parameters of the engine.

References

1.
Nanthagopal
,
K.
,
Kishna
,
R. S.
,
Atabani
,
A. E.
,
Al-Muhtaseb
,
A. H.
,
Kumar
,
G.
, and
Ashok
,
B.
,
2020
, “
A Compressive Review on the Effects of Alcohols and Nanoparticles as an Oxygenated Enhancer in Compression Ignition Engine
,”
Energy Convers. Manage.
,
203
, p.
112244
.
2.
EL-Seesy
,
A. I.
,
Kosaka
,
H.
,
Hassan
,
H.
, and
Sato
,
S.
,
2019
, “
Combustion and Emission Characteristics of a Common Rail Diesel Engine and RCEM Fueled by n-Heptanol-Diesel Blends and Carbon Nanomaterial Additives
,”
Energy Convers. Manage.
,
196
, pp.
370
394
.
3.
Santhosh
,
K.
,
Kumar
,
G. N.
, and
Sanjay
,
P. V.
,
2020
, “
Experimental Analysis of Performance and Emission Characteristics of CRDI Diesel Engine Fueled With 1-Pentanol/Diesel Blends with EGR Technique
,”
Fuel
,
267
, p.
117187
.
4.
Rajesh kumar
,
B.
, and
Saravanan
,
S.
,
2015
, “
Effect of Exhaust Gas Recirculation (EGR) on Performance and Emissions of a Constant Speed DI Diesel Engine Fueled With Pentanol/Diesel Blends
,”
Fuel
,
160
, pp.
217
226
.
5.
Sayin
,
C.
,
2010
, “
Engine Performance and Exhaust Gas Emissions of Methanol and Ethanol–Diesel Blends
,”
Fuel
,
89
(
11
), pp.
3410
3415
.
6.
Campos-Fernández
,
J.
,
Arnal
,
J. M.
,
Gómez
,
J.
, and
Dorado
,
M. P.
,
2012
, “
A Comparison of Performance of Higher Alcohols/Diesel Fuel Blends in a Diesel Engine
,”
Appl. Energy
,
95
, pp.
267
275
.
7.
Ashok
,
B.
,
Nanthagopal
,
K.
,
Darla
,
S.
,
Chyuan
,
O. H.
,
Ramesh
,
A.
,
Jacob
,
A.
,
Sahil
,
G.
,
Thiyagarajan
,
S.
, and
Geo
,
V. E.
,
2019
, “
Comparative Assessment of Hexanol and Decanol as Oxygenated Additives With Calophyllum Inophyllum Biodiesel
,”
Energy
,
173
, pp.
494
510
.
8.
De Poures
,
M. V.
,
Sathiyagnanam
,
A. P.
,
Rana
,
D.
,
Kumar
,
B. R.
, and
Saravanan
,
S.
,
2017
, “
1-Hexanol as a Sustainable Biofuel in DI Diesel Engines and Its Effect on Combustion and Emissions Under the Influence of Injection Timing and Exhaust Gas Recirculation (EGR)
,”
Appl. Therm. Eng.
,
113
, pp.
1505
1513
.
9.
EL-Seesy
,
A. I.
,
Kayatas
,
Z.
,
Hawi
,
M.
,
Kosaka
,
H.
, and
He
,
Z.
,
2020
, “
Combustion and Emission Characteristics of a Rapid Compression-Expansion Machine Operated With N-Heptanol-Methyl Oleate Biodiesel Blends
,”
Renewable Energy
,
147
, pp.
2064
2076
.
10.
Kumar
,
B. R.
, and
Saravanan
,
S.
,
2016
, “
Use of Higher Alcohol Biofuels in Diesel Engines: A Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
84
115
.
11.
EL-Seesy
,
A. I.
,
Kayatas
,
Z.
,
Takayama
,
R.
,
He
,
Z.
,
Kandasamy
,
S.
, and
Kosaka
,
H.
,
2020
, “
Combustion and Emission Characteristics of RCEM and Common Rail Diesel Engine Working With Diesel Fuel and Ethanol/Hydrous Ethanol Injected in the Intake and Exhaust Port: Assessment and Comparison
,”
Energy Convers. Manage.
,
205
, p.
112453
.
12.
Lapuerta
,
M.
,
Rodríguez-Fernández
,
J.
,
Fernández-Rodríguez
,
D.
, and
Patiño-Camino
,
R.
,
2018
, “
Cold Flow and Filterability Properties of n-Butanol and Ethanol Blends With Diesel and Biodiesel Fuels
,”
Fuel
,
224
, pp.
552
559
.
13.
Higashide
,
W.
,
Li
,
Y.
,
Yang
,
Y.
, and
Liao
,
J. C.
,
2011
, “
Metabolic Engineering of Clostridium cellulolyticum for Production of Isobutanol From Cellulose
,”
Appl. Environ. Microbiol.
,
77
(
8
), pp.
2727
2733
.
14.
Desai
,
S. H.
,
Rabinovitch-Deere
,
C. A.
,
Fan
,
Z.
, and
Atsumi
,
S.
,
2015
, “
Isobutanol Production From Cellobionic Acid in Escherichia Coli
,”
Microb. Cell Fact.
,
14
(
1
), pp.
1
10
.
15.
Formighieri
,
C.
,
2015
,
Solar-to-Fuel Conversion in Algae and Cyanobacteria
,
Springer International Publishing
,
New York
, pp.
31
38
.
16.
Ofuonye
,
E.
,
Kutin
,
K.
, and
Stuart
,
D. T.
,
2013
, “
Engineering Saccharomyces Cerevisiae Fermentative Pathways for the Production of Isobutanol.
,”
Biofuels
,
4
(
2
), pp.
185
201
.
17.
Babu
,
D.
, and
Anand
,
R.
,
2017
, “
Effect of Biodiesel-Diesel-n-Pentanol and Biodiesel-Diesel-n-Hexanol Blends on Diesel Engine Emission and Combustion Characteristics
,”
Energy
,
133
, pp.
761
776
.
18.
Pandian
,
A. K.
,
Munuswamy
,
D. B.
,
Radhakrishanan
,
S.
,
Devarajan
,
Y.
,
Ramakrishnan
,
R. B. B.
, and
Nagappan
,
B.
,
2018
, “
Emission and Performance Analysis of a Diesel Engine Burning Cashew Nut Shell Oil Bio Diesel Mixed With Hexanol
,”
Pet. Sci.
,
15
(
1
), pp.
176
184
.
19.
Ramesh
,
A.
,
Ashok
,
B.
,
Nanthagopal
,
K.
,
Pathy
,
M. R.
,
Tambare
,
A.
,
Mali
,
P.
,
Phuke
,
P.
,
Patil
,
S.
, and
Subbarao
,
R.
,
2019
, “
Influence of Hexanol as Additive With Calophyllum Inophyllum Biodiesel for CI Engine Applications
,”
Fuel
,
249
, pp.
472
485
.
20.
Sundar
,
R. C.
, and
Saravanan
,
G.
,
2011
, “
Influence of Hexanol-Diesel Blends on Constant Speed Diesel Engine
,”
Therm. Sci.
,
15
(
4
), pp.
1215
1222
.
21.
Kumar
,
B. R.
,
Saravanan
,
S.
,
Rana
,
D.
, and
Nagendran
,
A.
,
2016
, “
A Comparative Analysis on Combustion and Emissions of Some Next Generation Higher-Alcohol/Diesel Blends in a Direct-Injection Diesel Engine
,”
Energy Convers. Manage.
,
119
, pp.
246
256
.
22.
Nour
,
M.
,
Attia
,
A. M.
, and
Nada
,
S. A.
,
2019
, “
Combustion, Performance and Emission Analysis of Diesel Engine Fuelled by Higher Alcohols (Butanol, Octanol and Heptanol)/Diesel Blends
,”
Energy Convers. Manage.
,
185
, pp.
313
329
.
23.
Nour
,
M.
,
Kosaka
,
H.
,
Bady
,
M.
,
Sato
,
S.
, and
Abdel-Rahman
,
A. K.
,
2017
, “
Combustion and Emission Characteristics of DI Diesel Engine Fuelled by Ethanol Injected Into the Exhaust Manifold
,”
Fuel Process. Technol.
,
164
, pp.
33
50
.
24.
Nour
,
M.
,
Attia
,
A. M.
, and
Nada
,
S. A.
,
2019
, “
Improvement of CI Engine Combustion and Performance Running on Ternary Blends of Higher Alcohol (Pentanol and Octanol)/Hydrous Ethanol/Diesel
,”
Fuel
,
251
, pp.
10
22
.
25.
Radheshyam
,
Santhosh
,
K.
, and
Kumar
,
G. N.
,
2020
, “
Effect of 1-Pentanol Addition and EGR on the Combustion, Performance and Emission Characteristic of a CRDI Diesel Engine
,”
Renewable Energy
,
145
, pp.
925
936
.
26.
Agarwal
,
A. K.
, and
Agarwal
,
D.
,
2021
, “
Field-Testing of Biodiesel (B100) and Diesel-Fueled Vehicles: Part 3—Wear Assessment of Liner and Piston Rings, Engine Deposits, and Operational Issues
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042308
.
27.
Agarwal
,
A. K.
, and
Agarwal
,
D.
,
2021
, “
Field-Testing of Biodiesel (B100) and Diesel-Fueled Vehicles: Part 2—Lubricating Oil Condition Monitoring
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042308
.
28.
Agarwal
,
A. K.
, and
Agarwal
,
D.
,
2021
, “
Field-Testing of Biodiesel (B100) and Diesel-Fueled Vehicles: Part 1—No Load and Highway Driving Emissions, and Acceleration Characteristics
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042307
.
29.
Patel
,
C.
,
Hwang
,
J.
,
Bae
,
C.
, and
Agarwal
,
A. K.
,
2021
, “
Regulated, Unregulated, and Particulate Emissions From Biodiesel Blend Fueled Transportation Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
084501
.
30.
Ashok
,
B.
,
Jeevanantham
,
A. K.
,
Prabhu
,
K.
,
Shirude
,
P. M.
,
Shinde
,
D. D.
,
Nadgauda
,
N. S.
, and
Karthick
,
C.
,
2021
, “
Multi-Objective Optimization on Vibration and Noise Characteristics of Light Duty Biofuel Powered Engine at Idling Condition Using Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042301
.
31.
El-Seesy
,
A. I.
,
Nour
,
M.
,
Attia
,
A. M.
,
He
,
Z.
, and
Hassan
,
H.
,
2020
, “
Investigation the Effect of Adding Graphene Oxide Into Diesel/Higher Alcohols Blends on a Diesel Engine Performance
,”
Int. J. Green Energy
,
17
(
3
), pp.
233
253
.
32.
Pan
,
M.
,
Huang
,
R.
,
Liao
,
J.
,
Ouyang
,
T.
,
Zheng
,
Z.
,
Lv
,
D.
, and
Huang
,
H.
,
2018
, “
Effect of EGR Dilution on Combustion, Performance and Emission Characteristics of a Diesel Engine Fueled With n-Pentanol and 2-Ethylhexyl Nitrate Additive
,”
Energy Convers. Manage.
,
176
, pp.
246
255
.
33.
Wei
,
L.
,
Cheung
,
C. S.
, and
Huang
,
Z.
,
2014
, “
Effect of n-Pentanol Addition on the Combustion, Performance and Emission Characteristics of a Direct-Injection Diesel Engine
,”
Energy
,
70
, pp.
172
180
.
34.
Hountalas
,
D. T.
,
Mavropoulos
,
G. C.
, and
Binder
,
K. B.
,
2008
, “
Effect of Exhaust Gas Recirculation (EGR) Temperature for Various EGR Rates on Heavy Duty DI Diesel Engine Performance and Emissions
,”
Energy
,
33
(
2
), pp.
272
283
.
35.
Ayodhya
,
A. S.
,
Lamani
,
V. T.
,
Bedar
,
P.
, and
Kumar
,
G. N.
,
2018
, “
Effect of Exhaust Gas Recirculation on a CRDI Engine Fueled With Waste Plastic Oil Blend
,”
Fuel
,
227
, pp.
394
400
.
36.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2020
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012201
.
37.
Yilmaz
,
N.
, and
Atmanli
,
A.
,
2017
, “
Experimental Assessment of a Diesel Engine Fueled With Diesel-Biodiesel-1-Pentanol Blends
,”
Fuel
,
191
, pp.
190
197
.
38.
Chen
,
H.
,
Su
,
X.
,
He
,
J.
, and
Xie
,
B.
,
2019
, “
Investigation on Combustion and Emission Characteristics of a Common Rail Diesel Engine Fueled With Diesel/n-Pentanol/Methanol Blends
,”
Energy
,
167
, pp.
297
311
.
39.
Raj
,
V. M.
,
Subramanian
,
L. G.
,
Thiyagarajan
,
S.
, and
Geo
,
V. E.
,
2018
, “
Effects of Minor Addition of Aliphatic (1-Pentanol) and Aromatic (Benzyl Alcohol) Alcohols in Simarouba Glauca-Diesel Blend Fuelled CI Engine
,”
Fuel
,
234
, pp.
934
943
.
40.
Kumar
,
B. R.
,
Saravanan
,
S.
,
Rana
,
D.
,
Anish
,
V.
, and
Nagendran
,
A.
,
2016
, “
Effect of a Sustainable Biofuel–n-Octanol–on the Combustion, Performance and Emissions of a DI Diesel Engine Under Naturally Aspirated and Exhaust gas Recirculation (EGR) Modes
,”
Energy Convers. Manage.
,
118
, pp.
275
286
.
41.
El-Seesy
,
A. I.
, and
Hassan
,
H.
,
2019
, “
Investigation of the Effect of Adding Graphene Oxide, Graphene Nanoplatelet, and Multiwalled Carbon Nanotube Additives With n-Butanol-Jatropha Methyl Ester on a Diesel Engine Performance
,”
Renewable Energy
,
132
, pp.
558
574
.
42.
Thangaraja
,
J.
, and
Kannan
,
C.
,
2016
, “
Effect of Exhaust Gas Recirculation on Advanced Diesel Combustion and Alternate Fuels—A Review
,”
Appl. Energy
,
180
, pp.
169
184
.
43.
Geng
,
L.
,
Chen
,
Y.
,
Chen
,
X.
, and
Chia-fon
,
F. L.
,
2019
, “
Study on Combustion Characteristics and Particulate Emissions of a Common-Rail Diesel Engine Fueled With n-Butanol and Waste Cooking Oil Blends
,”
J. Energy Inst.
,
92
(
3
), pp.
438
449
.
44.
Edara
,
G.
,
Satyanarayana Murthy
,
Y. V. V.
,
Srinivas
,
P.
,
Nayar
,
J.
, and
Ramesh
,
M.
,
2018
, “
Effect of Cooled EGR on Modified Light Duty Diesel Engine for Combustion, Performance and Emissions Under High Pressure Split Injection Strategies
,”
Case Stud. Therm. Eng.
,
12
(
3
), pp.
188
202
.
45.
Kumar Agrawal
,
A.
,
Singh
,
S. K.
,
Sinha
,
S.
, and
Shukla
,
M. K.
,
2004
, “
Effect of EGR on the Exhaust Gas Temperature and Exhaust Opacity in Compression Ignition Engines
,”
Sadhana
,
29
(
3
), pp.
275
284
.
46.
Emiroğlu
,
A. O.
, and
Şen
,
M.
,
2018
, “
Combustion, Performance and Emission Characteristics of Various Alcohol Blends in a Single Cylinder Diesel Engine
,”
Fuel
,
212
, pp.
34
40
.
47.
Atmanli
,
A.
, and
Yilmaz
,
N.
,
2018
, “
A Comparative Analysis of n-Butanol/Diesel and 1-Pentanol/Diesel Blends in a Compression Ignition Engine
,”
Fuel
,
234
, pp.
161
169
.
48.
Westbrook
,
C. K.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2006
, “
Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions From Diesel Engines
,”
J. Phys. Chem. A
,
110
(
21
), pp.
6912
6922
.
49.
Verma
,
S.
,
Das
,
L. M.
,
Kaushik
,
S. C.
, and
Bhatti
,
S. S.
,
2019
, “
The Effects of Compression Ratio and EGR on the Performance and Emission Characteristics of Diesel-Biogas Dual Fuel Engine
,”
Appl. Therm. Eng.
,
150
, pp.
1090
1103
.
50.
Xie
,
F.
,
Li
,
X.
,
Su
,
Y.
,
Hong
,
W.
,
Jiang
,
B.
, and
Han
,
L.
,
2016
, “
Influence of Air and EGR Dilutions on Improving Performance of a High Compression Ratio Spark-Ignition Engine Fueled With Methanol at Light Load
,”
Appl. Therm. Eng.
,
94
, pp.
559
567
.
51.
Atmanli
,
A.
,
2016
, “
Comparative Analyses of Diesel–Waste Oil Biodiesel and Propanol, n-Butanol or 1-Pentanol Blends in a Diesel Engine
,”
Fuel
,
176
, pp.
209
215
.
52.
Yilmaz
,
N.
, and
Atmanli
,
A.
,
2017
, “
Experimental Evaluation of a Diesel Engine Running on the Blends of Diesel and Pentanol as a Next Generation Higher Alcohol
,”
Fuel
,
210
, pp.
75
82
.
53.
Ickes
,
A. M.
,
Bohac
,
S. V.
, and
Assanis
,
D. N.
,
2009
, “
Effect of 2-Ethylhexyl Nitrate Cetane Improver on NO x Emissions From Premixed Low-Temperature Diesel Combustion
,”
Energy Fuels
,
23
(
10
), pp.
4943
4948
.
54.
El-Seesy
,
A. I.
,
Hassan
,
H.
, and
Kosaka
,
H.
,
2019
, “
Improving the Performance of a Diesel Engine Operated With Jojoba Biodiesel-Diesel-n-Butanol Ternary Blends
,”
Energy Procedia
,
156
, pp.
33
37
.
55.
Nouni
,
M. R.
,
Jha
,
P.
,
Sarkhel
,
R.
,
Banerjee
,
C.
,
Tripathi
,
A. K.
, and
Manna
,
J.
,
2021
, “
Alternative Fuels for Decarbonisation of Road Transport Sector in India: Options, Present Status, Opportunities, and Challenges
,”
Fuel
,
305
, p.
121583
.
56.
Gad
,
M. S.
,
El-Seesy
,
A. I.
,
Radwan
,
A.
, and
He
,
Z.
,
2020
, “
Enhancing the Combustion and Emission Parameters of a Diesel Engine Fueled by Waste Cooking Oil Biodiesel and Gasoline Additives
,”
Fuel
,
269
, p.
117466
.
57.
Cataluna
,
R.
, and
Da Silva
,
R.
,
2012
, “
Effect of Cetane Number on Specific Fuel Consumption and Particulate Matter and Unburned Hydrocarbon Emissions From Diesel Engines
,”
J. Combust.
,
2012
, pp.
1
6
.
58.
Pan
,
M.
,
Huang
,
R.
,
Liao
,
J.
,
Jia
,
C.
,
Zhou
,
X.
,
Huang
,
H.
, and
Huang
,
X.
,
2019
, “
Experimental Study of the Spray, Combustion, and Emission Performance of a Diesel Engine With High n-Pentanol Blending Ratios
,”
Energy Convers. Manage.
,
194
, pp.
1
10
.
59.
Huang
,
H.
,
Lv
,
D.
,
Zhu
,
J.
,
Chen
,
Y.
,
Zhu
,
Z.
,
Pan
,
M.
,
Huang
,
R.
, and
Jia
,
C.
,
2018
, “
Development and Validation of a New Reduced Diesel/n-Pentanol Mechanism for Diesel Engine Applications
,”
Energy Fuels
,
32
(
9
), pp.
9934
9948
.
You do not currently have access to this content.