Abstract

The combustion performance of a compression ignition (CI) four-stroke aviation engine fueled with pure kerosene No. 3 rocket propellant (RP-3) was experimentally investigated for comparison with diesel. Pilot injection and main injection for RP-3 and diesel were unified under same test conditions. The results show that when burning RP-3, the maximum power of engine is 1% lower than that of burning diesel, with lower specific fuel consumption (SFC) and effective thermal efficiency (ETE). The combustion durations of RP-3 and diesel show small differences of less than 0.4 °CA under heavy loads, while the combustion duration of RP-3 is shorter than that of diesel under low loads. The crank angle at 50% mass fraction burnt (CA50) of RP-3 shows differences of 0.3–1 °CA compared with that of diesel. For pilot injection at a high engine speed, the ignition delay angle (IDA) of RP-3 is basically equal to that of diesel. With decreasing engine speed, the maximum difference of 1.2 °CA in IDAs exists under medium or small loads. For the main injection, the IDA of RP-3 is larger than that of diesel under heavy loads at various engine speeds. As the load decreases, the IDA of RP-3 is extended. The peak heat release rate (HRR) of RP-3 during main injection combustion is basically the same as that of diesel under heavy loads, while the intervention effect of unburnt pilot-injected RP-3 under low loads results in a higher peak HRR.

References

1.
Guangshuo
,
F.
, and
Ming
,
Z.
,
2016
, “
Assessment of Heavy Fuel Aircraft Piston Engine Types
,”
J Tsinghua Univ. (Sci. Technol.)
,
56
(
10
), pp.
1114
1121
.
2.
Feser
,
J.
, and
Gupta
,
A. K.
,
2021
, “
Performance and Emissions of Drop-In Aviation Biofuels in a Lab Scale Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042103
.
3.
Sohret
,
Y.
,
Ekici
,
S.
,
Altuntas
,
O.
,
Hepbasli
,
A.
, and
Karakoç
,
T. H.
,
2016
, “
Exergy as a Useful Tool for the Performance Assessment of Aircraft Gas Turbine Engines: A Key Review
,”
Prog. Aerosp. Sci.
,
83
, pp.
57
69
.
4.
Xing
,
F.
,
Kumar
,
A.
,
Huang
,
Y.
,
Chan
,
S.
,
Ruan
,
C.
,
Gu
.
S.
, and
Fan
,
X.
,
2017
, “
Flameless Combustion With Liquid Fuel: A Review Focusing on Fundamentals and Gas Turbine Application
,”
Appl. Energy
,
193
, pp.
28
51
.
5.
Soloiu
,
V.
,
Ochieng
,
H.
,
Weaver
,
J.
,
Duggan
,
M.
,
Harp
,
S.
,
Vlcek
,
B.
,
Jenkins
,
C.
, and
Jansons
,
M.
,
2013
, “Combustion and Emissions Characteristics of JP-8 Blends and ULSD #2 With Similar CN in a Direct Injection Naturally Aspirated Compression Engine,”
SAE Technical Papers 2013-01-1682
.
6.
Labeckas
,
G.
, and
Slavinskas
,
S.
,
2015
, “
Combustion Phenomenon, Performance and Emissions of a Diesel Engine With Aviation Turbine JP-8 Fuel and Rapeseed Biodiesel Blends
,”
Energy Convers. Manag.
,
105
, pp.
216
229
.
7.
Mangus
,
M.
,
Mattson
,
J.
, and
Depcik
,
C.
,
2015
, “
Performance and Emissions Characteristics of Hydroprocessed Renewable Jet Fuel Blends in a Single-Cylinder Compression Ignition Engine With Electronically Controlled Fuel Injection
,”
Combust. Sci. Technol.
,
187
(
6
), pp.
857
873
.
8.
Lee
,
J.
,
Oh
,
H.
, and
Bae
,
C.
,
2012
, “
Combustion Process of JP-8 and Fossil Diesel Fuel in a Heavy Duty Diesel Engine Using Two-Color Thermometry
,”
Fuel
,
102
, pp.
264
273
.
9.
Papagiannakis
,
R. G.
,
Kotsiopoulos
,
P. N.
, and
Hountalas
,
D. T.
,
2006
, “Single Fuel Research Program Comparative Results of the Use of JP-8 Aviation Fuel Versus Diesel Fuel on a Direct Injection and Indirect Injection Diesel Engine,”
SAE Paper 2006-01-1673
.
10.
Lee
,
J.
, and
Bae
,
C.
,
2011
, “
Application of JP-8 in a Heavy Duty Diesel Engine
,”
Fuel
,
90
(
5
), pp.
1762
1770
.
11.
Xu
,
J.
,
Nie
,
K.
,
Huang
,
G.
, et al
,
2021
, “
Control of Torque and Air-Fuel Ratio of Compression-Ignition Aero Piston Engine
,”
J. Aerosp. Power
,
36
(
5
), pp.
1083
1093
.
12.
Shen
,
Y.
,
Nie
,
K.
,
Xu
,
J.
, and
Chen
,
G.
,
2021
, “
Combustion and Emission Characteristics of Compression-Ignition Aero Piston Engine at Different Altitudes
,”
J. Propuls. Technol
.
13.
Park
,
S. H.
,
Youn
,
I. M.
,
Lim
,
Y.
, and
Le
,
C. S.
,
2013
, “
Influence of the Mixture of Gasoline and Diesel Fuels on Droplet Atomization, Combustion, and Exhaust Emission Characteristics in a Compression Ignition Engine
,”
Fuel Process. Technol.
,
106
, pp.
392
401
.
14.
De Menezes
,
E. W.
,
Da Silva
,
R.
,
Cataluna
,
R.
, and
Ortega
,
R. J. C.
,
2006
, “
Effect of Ethers and Ether/Ethanol Additives on the Physicochemical Properties of Diesel Fuel and on Engine Tests
,”
Fuel
,
85
(
5–6
), pp.
815
822
.
15.
Bowden
,
J.
,
Westbrook
,
S.
, and
LePera
,
M.
,
1989
, “Jet kerosene fuels for military diesel application,” SAE technical paper 892070.
16.
Pandey
,
A. K.
, and
Nandgaonkar
,
M. R.
,
2010
, “
Performance, Emission and Pump Wear Analysis of JP-8 Fuel for Military Use on a 558 kW, CIDI Diesel Engine
,”
SAE Int. J. Fuels Lubr.
,
3
(
2
), pp.
238
245
.
17.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022205
.
18.
Bhowmik
,
S.
,
Panua
,
R.
,
Debroy
,
D.
, and
Paul
,
A.
,
2017
, “
Artificial Neural Network Prediction of Diesel Engine Performance and Emission Fueled With Diesel–Kerosene–Ethanol Blends: A Fuzzy-Based Optimization
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042201
.
19.
Chen
,
G.
,
Gamble
,
J. N.
,
McAndrew
,
D. W.
,
McGowan
,
J.
, and
Lynch
,
J. R.
,
2006
, “
Analytical and Experimental Investigation of Medium-Speed Diesel Engine Using
a Kerosene Fuel
,”
Proceedings of the ASME 2006 Internal Combustion Engine Division Spring Technical Conference. ASME 2006 Internal Combustion Engine Division Spring Technical Conference (ICES2006)
,
Aachen, Germany
,
May 7–10
, ASME, pp.
437
442
.
20.
Fernandes
,
G.
,
Fuschetto
,
J.
, and
Filipi
,
Z.
,
2007
, “
Impact of Military JP-8 Fuel on Heavy-Duty Diesel Engine Performance and Emissions
,”
Proc. Inst. Mech. Eng., Part D
,
221
(
8
), pp.
957
971
.
21.
Nargunde
,
J. C.
,
Jayakumar
,
C.
,
Sinha
,
A.
,
Acharya
,
K.
,
Bryzik
,
W.
, and
Henein
,
N.
, 2010, “
Comparison Between Combustion, Performance and Emission Characteristics of JP-8 and Ultra Low Sulfur Diesel Fuel in a Single Cylinder Diesel Engine
,”
SAE Paper 2010-01-1123
.
22.
Kouremenos
,
D. A.
,
Rakopoulos
,
C. D.
, and
Hountalas
,
D. T.
,
1997
, “
Experimental Investigation of the Performance and Exhaust Emission of a Swirl Chamber Diesel Engine Using JP-8 Aviation Fuel
,”
Int. J. Energy Res.
,
21
(
12
), pp.
1173
1185
.
23.
Murphy
,
L.
, and
Rothamer
,
D.
,
2011
, “Effects of Cetane Number on Jet Fuel Combustion in a Heavy-Duty Compression Ignition Engine at High Load,” SAE Technical Paper 2011-01-0335.
24.
Tay
,
K. L.
,
Yu
,
W.
,
Zhao
,
F.
, and
Yang
,
Y. M.
,
2020
, “
From Fundamental Study to Practical Application of Kerosene in Compression Ignition Engines: An Experimental and Modeling Review
,”
Proc. Inst. Mech. Eng., Part D
,
234
(
2–3
), pp.
303
333
.
25.
Chen
,
L.
,
Ding
,
S.
,
Liu
,
H.
,
Lu
,
Y.
,
Li
,
Y.
, and
Roskilly
,
A. P.
,
2017
, “
Comparative Study of Combustion and Emissions of Kerosene (RP-3), Kerosene-Pentanol Blends and Diesel in a Compression Ignition Engine
,”
Appl. Energy
,
203
, pp.
91
100
.
26.
Sun
,
M.
,
Gan
,
Z.
, and
Yang
,
Y.
,
2021
, “
A Comparison Study of Soot Precursor and Aggregate Property Between Algae-Based Aviation Biofuel and Aviation Kerosene RP-3 in Laminar Flame
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112304
.
27.
Du
,
W.
,
Zhang
,
Q.
,
Hou
,
J.
, et al
,
2019
, “
Comparative Investigation of Ignition and Combustion Characteristics of Wall-Impinged Kerosene (RP-3) and Diesel Sprays at Different Injection Pressures
,”
Chin. Intern. Combust. Engine Eng.
,
40
(
5
), pp.
30
37+45
.
28.
Jian
,
W.
,
Meisheng
,
A.
,
Bifeng
,
Y.
, et al
,
2020
, “
Effects of Diesel-Aviation Kerosene Wide Distillation Blend Fuels on Combustion Process and Emission Characteristics of Diesel Engines
,”
Trans. Chin. Soc. Agric. Eng.
,
36
(
2
), pp.
79
86
.
29.
Cathcart
,
G.
,
Dickson
,
G.
, and
Ahern
,
S.
, 2005, “
The Application of Air-Assist Direct Injection for Spark-Ignited Heavy Fuel 2-Stroke and 4-Stroke Engines
,” SAE Paper 2005-32-0065.
30.
National Technical Committee on Petroleum Products and Lubricants of Standardization Administration of China
,
2016
,
Automobile Diesel Fuels: GB 19147-2016[S/OL]
,
Standards Press of China
, Dec. 23, http://c.gb688.cn/bzgk/gb/showGb?type=downloadhcno=88F31AEECC7F7AE17C5A99496E532D2A
31.
National Energy Administration
,
2018
, NO.3 Jet Fuel: GB 6537-2018[S/OL] Standards Press of China, July 13, http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=13788EBE25FEFBFA2CC7688C80512A9C
32.
Roy
,
M. M.
,
2009
, “
Effect of Fuel Injection Timing and Injection Pressure on Combustion and Odorous Emissions in DI Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), pp.
790
796
.
You do not currently have access to this content.