Abstract

Chemical kinetic mechanism plays a vital role in the deep learning of reacting flow in practical combustors, which can help obtain many details of the combustion process. In this paper, a surrogate model and a skeletal mechanism for an endothermic hydrocarbon fuel were developed for further investigations of the combustion performance in hypersonic vehicles: (1) The surrogate model consists of 81.3 mol% decalin and 18.7 mol% n-dodecane, which were determined by both the composition distributions and key properties of the target endothermic hydrocarbon fuel. (2) A skeletal kinetic mechanism only containing 56 species and 283 reactions was developed by the method of “core mechanism + sub mechanism”. This mechanism can be conveniently applied to the simulation of practical combustors for its affordable scale. (3) Accuracies of the surrogate model and the mechanism were systematically validated by the various properties of the target fuel under pressures of 1–20atm, temperatures of 400–1250 K, and equivalence ratios of 0.5–1.5. The overall errors for the ignition and combustion properties are no more than 0.4 and 0.1, respectively. (4) Laminar flame speeds of the target fuel and the surrogate model fuel were also measured for the validations. Results show that both the surrogate model and the mechanism can well predict the properties of the target fuel. The mechanism developed in this work is valuable to the further design and optimization of the propulsion systems.

References

1.
Edwards
,
T.
,
Colket
,
M.
,
Cernansky
,
N.
,
Dryer
,
F.
,
Egolfopoulos
,
F.
,
Friend
,
D.
,
Law
,
E.
, et al
,
2007
, “
Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels
,”
Proceedings of 45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, AIAA Paper No.2007-770.
2.
Han
,
W.
, and
Gou
,
X.
,
2020
, “
Improved Path Flux Analysis Mechanism Reduction Method for High and Low Temperature Oxidation of Hydrocarbon Fuels
,”
Combust. Theory Modell.
,
24
(
6
), pp.
1090
1107
.
3.
Su
,
J.
,
Wu
,
Y.
,
Wang
,
Y.
,
Chen
,
X.
, and
Chen
,
Z.
,
2021
, “
Skeletal and Reduced Kinetic Models for Methane Oxidation Under Engine-Relevant Conditions
,”
Fuel
,
288
, p.
119667
.
4.
Hu
,
H.
,
Chen
,
H.
,
Yan
,
Y.
,
Zhang
,
F.
,
Yin
,
J.
, and
Zheng
,
D.
,
2021
, “
Investigation of Chemical Kinetic Model for Hypergolic Propellant of Monomethylhydrazine and Nitrogen Tetroxide
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062304
.
5.
Li
,
Y.
,
Chen
,
Y.
,
Xie
,
G.
, and
Sunden
,
B.
,
2020
, “
Heat Transfer and Secondary Flow Characteristics in a Horizontally Round Pipe for Cooling a Scramjet Combustor by Supercritical n-Decane
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022105
.
6.
Harris
,
Z.
,
Bittle
,
J.
, and
Agrawal
,
A.
,
2021
, “
Role of Inlet Boundary Conditions on Fuel-Air Mixing at Supercritical Conditions
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062302
.
7.
Sun
,
M.
,
Gan
,
Z.
, and
Yang
,
Y.
,
2021
, “
A Comparison Study of Soot Precursor and Aggregate Property Between Algae-Based Aviation Biofuel and Aviation Kerosene RP-3 in Laminar Flame
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112304
.
8.
Li
,
Y.
,
Jin
,
B.
,
Zhang
,
X.
, and
Liu
,
G.
,
2021
, “
Pyrolysis and Heat Sink of an Endothermic Hydrocarbon Fuel EHF-851
,”
J. Anal. Appl. Pyrolysis
,
155
, p.
105084
.
9.
Gascoin
,
N.
,
Abraham
,
G.
, and
Gillard
,
P.
,
2010
, “
Synthetic and Jet Fuels Pyrolysis for Cooling and Combustion Applications
,”
J. Anal. Appl. Pyrolysis
,
89
(
2
), pp.
294
306
.
10.
MacDonald
,
M. E.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2011
, “
Decomposition Measurements of RP-1, RP-2, JP-7, n-Dodecane, and Tetrahydroquinoline in Shock Tubes
,”
J. Propul. Power
,
27
(
5
), pp.
981
989
.
11.
Huang
,
H.
,
Spadaccini
,
L.
, and
Sobel
,
D.
,
2002
, “
Endothermic Heat-Sink of Jet Fuels for Scramjet Cooling
,”
Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Indianapolis, IN
, AIAA Paper No.2002-3871.
12.
Wang
,
Z.
,
Guo
,
Y.
, and
Lin
,
R.
,
2009
, “
Pyrolysis of Hydrocarbon Fuel ZH-100 Under Different Pressures
,”
J. Anal. Appl. Pyrolysis
,
85
(
1
), pp.
534
538
.
13.
Xing
,
Y.
,
Xie
,
W.
,
Fang
,
W.
,
Guo
,
Y.
, and
Lin
,
R.
,
2009
, “
Kinetics and Product Distributions for Thermal Cracking of a Kerosene-Based Aviation Fuel
,”
Energy Fuel
,
23
(
8
), pp.
4021
4024
.
14.
Jiang
,
R.
,
Liu
,
G.
, and
Zhang
,
X.
,
2013
, “
Thermal Cracking of Hydrocarbon Aviation Fuels in Regenerative Cooling Microchannels
,”
Energy Fuel
,
27
(
5
), pp.
2563
2577
.
15.
Edwards
,
T.
,
2006
, “
Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels
,”
Combust. Sci. Technol.
,
178
(
1–3
), pp.
307
334
.
16.
Li
,
Q.
,
Liu
,
H.
,
Zhang
,
Y.
,
Yan
,
Z.
,
Deng
,
F.
, and
Huang
,
Z.
,
2019
, “
Experimental and Kinetic Modeling Study of Laminar Flame Characteristics of Higher Mixed Alcohols
,”
Fuel Process. Technol.
,
188
, pp.
30
42
.
17.
Mansfield
,
A.
,
Boehman
,
A.
, and
Gorsich
,
D.
,
2020
, “
Assessment of Conventional and Alternative Energy Carriers for Use in Military Vehicle Platforms
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
041302
.
18.
Zheng
,
L.
,
Singh
,
P.
,
Cronly
,
J.
,
Ubogu
,
E. A.
,
Ahmed
,
I.
,
Ling
,
C.
,
Zhang
,
Y.
, and
Khandelwal
,
B.
,
2021
, “
Impact of Aromatic Structures and Content in Formulated Fuel for Jet Engine Applications on Particulate Matter Emissions
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122301
.
19.
Cooke
,
J. A.
,
Bellucci
,
M.
,
Smooke
,
M. D.
,
Gomez
,
A.
,
Violi
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2005
, “
Computational and Experimental Study of JP-8, a Surrogate, and Its Components in Counterflow Diffusion Flames
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
439
446
.
20.
Dagaut
,
P.
,
Reuillon
,
M.
,
Cathonnet
,
M.
, and
Voisin
,
D.
,
1995
, “
High Pressure Oxidation of Normal Decane and Kerosene in Dilute Conditions From Low to High Temperature
,”
J. Chem. Phys.
,
92
, pp.
47
76
.
21.
Zheng
,
D.
,
Yu
,
W.-M.
, and
Zhong
,
B.-J.
,
2015
, “
RP-3 Aviation Kerosene Surrogate Fuel and the Chemical Reaction Kinetic Model
,”
Acta Phys. -Chim. Sin.
,
31
(
4
), pp.
636
642
.
22.
Edwards
,
T.
, and
Maurice
,
L. Q.
,
2001
, “
Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels
,”
J. Propul. Power.
,
17
(
2
), pp.
461
466
.
23.
Zeng
,
Q.
,
Zeng
,
D.
, and
Zheng
,
D.
,
2020
, “
Characteristics and Kinetic Analysis of Ignition for Different Gasoline Surrogate Fuel Models
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082302
.
24.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
, and
Meeks
,
E.
,
2019
, “
A Comprehensive Kinetics Library for Simulating the Combustion of Automotive Fuels
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092201
.
25.
Dagaut
,
P.
, and
Cathonnet
,
M.
,
2006
, “
The Ignition, Oxidation, and Combustion of Kerosene: A Review of Experimental and Kinetic Modeling
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
48
92
.
26.
Yu
,
J.
, and
Gou
,
X.
,
2018
, “
Comprehensive Surrogate for Emulating Physical and Kinetic Properties of Jet Fuels
,”
J. Propul. Power.
,
34
(
3
), pp.
679
689
.
27.
Lu
,
T.
, and
Law
,
C. K.
,
2009
, “
Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
192
215
.
28.
Kim
,
D.
,
Martz
,
J.
, and
Violi
,
A.
,
2014
, “
A Surrogate for Emulating the Physical and Chemical Properties of Conventional Jet Fuel
,”
Combust. Flame
,
161
(
6
), pp.
1489
1498
.
29.
Fang
,
X.
,
Huang
,
X.
,
Chen
,
W.
,
Qiao
,
X.
, and
Ju
,
D.
,
2020
, “
Development of a Skeletal Surrogate Mechanism for Emulating Combustion Characteristics of Diesel From Direct Coal Liquefaction
,”
Combust. Flame
,
218
, pp.
84
97
.
30.
Humer
,
S.
,
Frassoldati
,
A.
,
Granata
,
S.
,
Faravelli
,
T.
,
Ranzi
,
E.
,
Seiser
,
R.
, and
Seshadri
,
K.
,
2007
, “
Experimental and Kinetic Modeling Study of Combustion of JP-8, Its Surrogates and Reference Components in Laminar Nonpremixed Flows
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
393
400
.
31.
Malewicki
,
T.
,
Gudiyella
,
S.
, and
Brezinsky
,
K.
,
2013
, “
Experimental and Modeling Study on the Oxidation of Jet A and the n-Dodecane/iso-Octane/n-Propylbenzene/1,3,5-Trimethylbenzene Surrogate Fuel
,”
Combust. Flame
,
160
(
1
), pp.
17
30
.
32.
Mueller
,
C. J.
,
Cannella
,
W. J.
,
Bruno
,
T. J.
,
Bunting
,
B.
,
Dettman
,
H. D.
,
Franz
,
J. A.
,
Huber
,
M. L.
, et al
,
2012
, “
Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics
,”
Energy Fuel
,
26
(
6
), pp.
3284
3303
.
33.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2016
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
.
34.
Mao
,
Y.
,
Raza
,
M.
,
Wu
,
Z.
,
Zhu
,
J.
,
Yu
,
L.
,
Wang
,
S.
,
Zhu
,
L.
, and
Lu
,
X.
,
2020
, “
An Experimental Study of n-Dodecane and the Development of an Improved Kinetic Model
,”
Combust. Flame
,
212
, pp.
388
402
.
35.
Vasu
,
S. S.
,
Davidson
,
D. F.
,
Hong
,
Z.
,
Vasudevan
,
V.
, and
Hanson
,
R. K.
,
2009
, “
n-Dodecane Oxidation at High-Pressures: Measurements of Ignition Delay Times and OH Concentration Time-Histories
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
173
180
.
36.
Yu
,
L.
,
Wu
,
Z.
,
Qiu
,
Y.
,
Qian
,
Y.
,
Mao
,
Y.
, and
Lu
,
X.
,
2018
, “
Ignition Delay Times of Decalin Over Low-to-Intermediate Temperature Ranges: Rapid Compression Machine Measurement and Modeling Study
,”
Combust. Flame
,
196
, pp.
160
173
.
37.
Ranzi
,
E.
,
2006
, “
A Wide-Range Kinetic Modeling Study of Oxidation and Combustion of Transportation Fuels and Surrogate Mixtures
,”
Energy Fuel
,
20
(
3
), pp.
1024
1032
.
38.
Sarathy
,
S. M.
,
Westbrook
,
C. K.
,
Mehl
,
M.
,
Pitz
,
W. J.
,
Togbe
,
C.
,
Dagaut
,
P.
,
Wang
,
H.
, et al
,
2011
, “
Comprehensive Chemical Kinetic Modeling of the Oxidation of 2-Methylalkanes From C7 to C20
,”
Combust. Flame
,
158
(
12
), pp.
2338
2357
.
39.
You
,
X.
,
Egolfopoulos
,
F. N.
, and
Wang
,
H.
,
2009
, “
Detailed and Simplified Kinetic Models of n-Dodecane Oxidation: The Role of Fuel Cracking in Aliphatic Hydrocarbon Combustion
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
403
410
.
40.
Zhong
,
B.-J.
, and
Peng
,
H.-S.
,
2019
, “
Development of a Skeletal Mechanism for Aviation Kerosene Surrogate Fuel
,”
J. Propul. Power.
,
35
(
3
), pp.
645
651
.
41.
Chang
,
Y.
,
Jia
,
M.
,
Liu
,
Y.
,
Li
,
Y.
, and
Xie
,
M.
,
2013
, “
Development of a New Skeletal Mechanism for n-Decane Oxidation Under Engine-Relevant Conditions Based on a Decoupling Methodology
,”
Combust. Flame
,
160
(
8
), pp.
1315
1332
.
42.
Pitz
,
W. J.
,
Naik
,
C. V.
,
Mhaoldúin
,
T. N.
,
Westbrook
,
C. K.
,
Curran
,
H. J.
,
Orme
,
J. P.
, and
Simmie
,
J. M.
,
2007
, “
Modeling and Experimental Investigation of Methylcyclohexane Ignition in a Rapid Compression Machine
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
267
275
.
43.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” http://ignis.usc.edu/USC_Mech_II.htm.
44.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1 − C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinet.
,
45
(
10
), pp.
638
675
.
45.
Design
,
R.
,
2010
, “Chemkin-Pro 15101,”,
Reaction Design
,
San Diego, CA
.
46.
Zhu
,
Y.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2014
, “
Pyrolysis and Oxidation of Decalin at Elevated Pressures: A Shock-Tube Study
,”
Combust. Flame
,
161
(
2
), pp.
371
383
.
47.
Ji
,
C.
,
Dames
,
E.
,
Wang
,
Y. L.
,
Wang
,
H.
, and
Egolfopoulos
,
F. N.
,
2010
, “
Propagation and Extinction of Premixed C5–C12 n-Alkane Flames
,”
Combust. Flame
,
157
(
2
), pp.
277
287
.
48.
Hui
,
X.
, and
Sung
,
C.-J.
,
2013
, “
Laminar Flame Speeds of Transportation-Relevant Hydrocarbons and Jet Fuels at Elevated Temperatures and Pressures
,”
Fuel
,
109
, pp.
191
200
.
49.
Zeng
,
M.
,
Li
,
Y.
,
Yuan
,
W.
,
Li
,
T.
,
Wang
,
Y.
,
Zhou
,
Z.
,
Zhang
,
L.
, and
Qi
,
F.
,
2017
, “
Experimental and Kinetic Modeling Study of Laminar Premixed Decalin Flames
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1193
1202
.
50.
Zhong
,
B.-J.
, and
Peng
,
H.-S.
,
2019
, “
Experimental and Kinetic Investigations of the Effect of H2/CH4/C2H4 Addition on the Burning Properties of Practical Jet Fuel
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1673
1681
.
51.
Zhong
,
B.-J.
, and
Peng
,
H.-S.
,
2020
, “
Experimental Study on the Combustion of Thermally Cracked Endothermic Hydrocarbon Fuel
,”
Combust. Sci. Technol.
,
192
(
2
), pp.
213
228
.
You do not currently have access to this content.