Abstract

Hydraulic fracturing is one of the revolutionary technologies widely applied to develop tight hydrocarbon reservoirs. Moreover, hydraulic fracture design optimization is an essential step to optimize production from tight reservoirs. This study presents the implementation of three new socio-inspired algorithms on hydraulic fracturing optimization. The work integrates reservoir simulation, artificial neural networks, and preceding optimization algorithms to attain the optimized fractures. For this study, a tight gas production dataset is initially generated numerically for a defined set of the fracture half-length, fracture height, fracture width, fracture conductivity, and the number of fractures’ values. Secondly, the generated dataset is trained through a neural network to predict the effects of preceding parameters on gas production. Lastly, three new socio-inspired algorithms including cohort intelligence (CI), multi-cohort intelligence (multi-CI), and teaching learning-based optimization (TLBO) are applied to the regressor output to obtain optimized gas production performance with the combination of optimum fracture design parameters. The results are then compared with the traditionally used optimizers including particle swarm optimization (PSO) and genetic algorithm (GA). The results demonstrated that the multi-CI and TLBO converge at the global best position more often with a success rate of at least 95% as compared to CI, PSO, and GA. Moreover, the CI, PSO, and GA are found to stuck many times at the local maximum. This concludes that the multi-CI and TLBO are good alternatives to PSO and GA considering their high performance in determining the optimum fracture design parameters in comparison.

References

1.
Ostojic
,
J.
,
Rezaee
,
R.
, and
Bahrami
,
H.
,
2012
, “
Production Performance of Hydraulic Fractures in Tight Gas Sands, A Numerical Simulation Approach
,”
J. Pet. Sci. Eng.
,
88–89
, pp.
75
81
.
2.
Khan
,
R.
, and
Raja
,
A.-n. A.
,
2012
, “
An Overview of Emerging Technologies and Innovations for Tight Gas Reservoir Development
,”
Paper Presented at SPE International Production and Operations Conference & Exhibition
,
Doha, Qatar
,
May 14–16
, SPE-155442-MS.
3.
Tiab
,
D.
, and
Donaldson
,
E. C.
,
2016
, “Shale-Gas Reservoirs,”
Petrophysics
, 4th ed.,
D.
Tiab
, and
E. C.
Donaldson
, eds.,
Gulf Professional Publishing
,
Houston, TX
, pp.
719
774
.
4.
Muther
,
T.
,
Khan
,
M. J.
,
Chachar
,
M. H.
, and
Aziz
,
H.
,
2020
, “
A Study on Designing Appropriate Hydraulic Fracturing Treatment with Proper Material Selection and Optimized Fracture Half-Length in Tight Multilayered Formation Sequence
,”
SN Appl. Sci.
,
2
(
5
), p.
886
.
5.
Guo
,
B.
,
Lyons
,
W. C.
, and
Ghalambor
,
A.
,
2007
, “Hydraulic Fracturing,”
Petroleum Production Engineering; A Computer Assisted Approach
,
B.
Guo
,
W. C.
Lyons
, and
A.
Ghalambor
, eds.,
Gulf Professional Publishing
,
Houston, TX
, pp.
251
265
.
6.
McGuire
,
W. J.
, and
Sikora
,
V. J.
,
1960
, “
The Effect of Vertical Fractures on Well Productivity
,”
J. Pet. Technol.
,
12
(
10
), pp.
72
74
.
7.
Muther
,
T.
,
Nizamani
,
A. A.
, and
Ismail
,
A. R.
,
2020b
, “
Analysis on the Effect of Different Fracture Geometries on the Productivity of Tight gas Reservoirs
,”
Mal. J. Fund. Appl. Sci.
,
16
(
2
), pp.
201
211
.
8.
Chu
,
S. C.
,
Huang
,
H. C.
,
Roddick
,
J. F.
, and
Pan
,
J. S.
,
2011
, “Overview of Algorithms for Swarm Intelligence,”
Computational Collective Intelligence. Technologies and Applications. ICCCI 2011. Lecture Notes in Computer Science
, Vol.
6922
,
P.
Jędrzejowicz
, and
N. T.
Nguyen
,
K.
Hoang
, eds.,
Springer
,
Berlin/Heidelberg
.
9.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of IEEE International Conference on Neural Networks
, Vol.
IV
, pp.
1942
1948
.
10.
Dorigo
,
M.
,
Birattari
,
M.
, and
Stutzle
,
T.
,
2006
, “
Ant Colony Optimization
,”
IEEE Comput. Intell. Mag.
,
1
(
4
), pp.
28
39
.
11.
Coello Coello
,
C. A.
,
2005
, “An Introduction to Evolutionary Algorithms and Their Applications,”
Advanced Distributed Systems. ISSADS 2005. Lecture Notes in Computer Science
, Vol.
3563
,
F. F.
Ramos
,
V.
Larios Rosillo
, and
H.
Unger
, eds.,
Springer
,
Berlin, Heidelberg
.
12.
Holland
,
J. H.
,
1992
, “
Genetic Algorithms
,”
Sci. Am.
,
267
(
1
), pp.
66
73
.
13.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.
14.
Rao
,
R. V.
,
Savsani
,
V. J.
, and
Vakharia
,
D. P.
,
2011
, “
Teaching–Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems
,”
Comput.-Aided Des.
,
43
(
3
), pp.
303
315
.
15.
Kulkarni
,
A. J.
,
Durugkar
,
I. P.
, and
Kumar
,
M. R.
,
2013
, “
Cohort Intelligence: a Self-Supervised Learning Behavior
,”
Proceedings of IEEE International Conference on Systems, man and Cybernetics
,
Manchester, UK
, pp.
1396
1400
.
16.
Ai
,
K.
,
Duan
,
L.
,
Gao
,
H.
, and
Jia
,
G.
,
2018
, “
Hydraulic Fracturing Treatment Optimization for Low Permeability Reservoirs Based on Unified Fracture Design
,”
Energies
,
11
(
7
), p.
1720
.
17.
Al-Fatlawi
,
O.
,
Hossain
,
M.
, and
Essa
,
A.
,
2019
, “
Optimization of Fracture Parameters for Hydraulic Fractured Horizontal Well in a Heterogeneous Tight Reservoir: an Equivalent Homogeneous Modelling Approach
,”
SPE Kuwait Oil & Gas Show and Conference
,
Oct.
,
Society of Petroleum Engineers
.
18.
Jang
,
H.
, and
Lee
,
J.
,
2015
, “
Effect of Fracture Design Parameters on the Well Performance in a Hydraulically Fractured Shale gas Reservoir
,”
Energy Explor. Exploit.
,
33
(
2
), pp.
157
168
.
19.
Han
,
X.
,
Zhou
,
F.
,
Xiong
,
C.
,
Liu
,
X.
, and
Yang
,
X.
,
2013
, “
The Optimal Design of Hydraulic Fracture Parameters in Fractured gas Reservoirs with low Porosity
,”
Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering
,
March
,
Atlantis Press
.
20.
Shirbazo
,
A.
,
Fahimpour
,
J.
, and
Aminshahidy
,
B.
,
2020
, “
A New Approach to Finding Effective Parameters Controlling the Performance of Multi-Stage Fractured Horizontal Wells in Low-Permeability Heavy-oil Reservoirs Using RSM Technique
,”
J. Pet. Explor. Prod. Technol.
,
10
(
8
), pp.
3569
3586
.
21.
Mohaghegh
,
S.
,
Popa
,
A.
, and
Ameri
,
S.
,
1999
, “
Intelligent Systems can Design Optimum Fracturing Jobs
,”
SPE Eastern Regional Meeting
,
Jan.
,
Society of Petroleum Engineers
.
22.
Odedele
,
T. O
, and
Ibrahim
,
H. D
,
2017
, “
Hydraulic Fracturing Design Optimization and Post Fracture Performance Prediction Using Hybrid Intelligent Evolutionary Computing and Fuzzy Support Vector Machines
,”
Proceedings of the World Congress on Engineering
, Vol.
1
,
London, UK
,
July 5–7
.
23.
Mirjalili
,
S.
,
Dong
,
J. S.
,
Sadiq
,
A. S.
, and
Faris
,
H.
,
2020
, “Genetic Algorithm: Theory, Literature Review, and Application in Image Reconstruction,”
Nature-Inspired Optimizers
,
S.
Mirjalili
,
J.
Song Dong
, and
A.
Lewis
, eds.,
Springer
,
Cham
, pp.
69
85
.
24.
Kulkarni
,
A. J.
,
Baki
,
M. F.
, and
Chaouch
,
B. A.
,
2016
, “
Application of the Cohort-Intelligence Optimization Method to Three Selected Combinatorial Optimization Problems
,”
Eur. J. Oper. Res.
,
250
(
2
), pp.
427
447
.
25.
Marde
,
K.
,
Kulkarni
,
A. J.
, and
Singh
,
P. K.
,
2019
, “Optimum Design of Four Mechanical Elements Using Cohort Intelligence Algorithm,”
Socio-Cultural Inspired Metaheuristics
,
A. J.
Kulkarni
,
P. K.
Singh
,
S. C.
Satapathy
,
A.
Husseinzadeh Kashan
, and
K.
Tai
, eds.,
Springer
,
Singapore
, pp.
1
25
.
26.
Shastri
,
A. S.
, and
Kulkarni
,
A. J.
,
2018
, “
Multi-Cohort Intelligence Algorithm: An Intra-and Inter-Group Learning Behaviour Based Socio-Inspired Optimisation Methodology
,”
Int. J. Parallel Emergent Distrib. Syst.
,
33
(
6
), pp.
675
715
.
27.
Shastri
,
A. S.
,
Nargundkar
,
A.
,
Kulkarni
,
A. J.
, and
Sharma
,
K. K.
,
2020
, “
Multi-cohort Intelligence Algorithm for Solving Advanced Manufacturing Process Problems
,”
Neural Comput. Appl.
, pp.
1
21
.
28.
Rao
,
R. V.
,
Savsani
,
V. J.
, and
Balic
,
J.
,
2012
, “
Teaching-Learning-Based Optimization Algorithm for Unconstrained and Constrained Real Parameter Optimization Problems
,”
Eng. Optim.
,
44
(
12
), pp.
1447
1462
.
29.
Rao
,
R. V.
,
2016
, “Teaching-Learning-Based Optimization Algorithm,”
Teaching Learning-Based Optimization Algorithm and its Engineering Applications
,
R. V.
Rao
, ed.,
Springer
,
Cham
, pp.
9
39
.
30.
Chen
,
X.
,
Xu
,
B.
,
Yu
,
K.
, and
Du
,
W.
,
2018
, “
Teaching-learning-based Optimization with Learning Enthusiasm Mechanism and its Application in Chemical Engineering
,”
J. Appl. Math.
,
2018
, pp.
1
19
.
31.
Hegre
,
T. M.
,
1996
, “
Hydraulically Fractured Horizontal Well Simulation
,”
Paper Presented at the European 3-D Reservoir Modelling Conference
,
Stavanger, Norway
.
32.
Cheng
,
Y.
,
Lee
,
W. J.
, and
McVay
,
D. A.
,
2008
, “
Improving Reserves Estimates From Decline-Curve Analysis of Tight and Multilayer gas Wells
,”
SPE Reservoir Eval. Eng.
,
11
(
05
), pp.
912
920
.
33.
Defeu
,
C. W.
,
2010
, “Production Optimization of a Tight Sandstone Gas Reservoir with Well Completions: A Numerical Simulation Study,”
Masters’ Dissertation
,
Texas Tech University
,
Lubbock, TX
.
34.
Houze
,
O.
,
Viturat
,
D.
, and
Fjaere
,
O. S.
,
2017
,
Dynamic Data Analysis
,
Kappa
,
France
.
You do not currently have access to this content.