Abstract

Intake pipe design is important for rotary engine performance due to great influence on in-cylinder flow and combustion characteristics. This paper analyzes the effect of intake pipe deflection angle on the performance of a gasoline rotary engine. In the parametric study, the intake pipe is deflected from the left to the right with a 10 deg interval and the maximum deflection range of 30 deg at each side. A computational fluid dynamics numerical simulation model of the rotary engine is established. The simulation results show that when the intake pipe is deflected to the left from the original design, the engine volumetric efficiency first increases and then decreases with an increasing deflection angle. During ignition, the turbulent kinetic energies in the cylinder increase with an increasing deflection angle. When the intake pipe is deflected to the left by 30 deg, the turbulent kinetic energy is increased by 85.9% compared to the original design. The peak cylinder pressures first increase and then decrease with an increasing deflection angle. When the intake pipe is deflected by 10 deg to the left, the peak cylinder pressure is 9.3% higher than that of the original design. The maximum NOx emission can be increased by 4.8% and the minimum NOx emission can be decreased by 13.3%. It is found that deflecting the intake pipe to the left enhances the tumble effect and increases the combustion velocity. Overall, deflecting the intake pipe to the right is less effective than deflecting to the left. This analysis provides a comprehensive understanding on intake pipe design for rotary engines.

References

1.
Chen
,
W.
,
Pan
,
J.
,
Liu
,
Y.
,
Fan
,
B.
,
Liu
,
H.
, and
Otchere
,
P.
,
2019
, “
Numerical Investigation of Direct Injection Stratified Charge Combustion in a Natural Gas-Diesel Rotary Engine
,”
Appl. Energy
,
233–234
, pp.
453
467
.
2.
Shi
,
C.
,
Ji
,
C.
,
Wang
,
S.
,
Yang
,
J.
,
Li
,
X.
, and
Ge
,
Y.
,
2019
, “
Effects of Hydrogen Direct-Injection Angle and Charge Concentration on Gasoline-Hydrogen Blending Lean Combustion in a Wankel Engine
,”
Energy Convers. Manage.
,
187
, pp.
316
327
.
3.
Taskiran
,
O. O.
,
Calik
,
A. T.
, and
Kutlar
,
O. A.
,
2019
, “
Comparison of Flow Field and Combustion in Single and Double Side Ported Rotary Engine
,”
Fuel
,
254
, p.
115651
.
4.
Sadiq
,
G. A.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2019
, “
Development of Rotary Wankel Devices for Hybrid Automotive Applications
,”
Energy Convers. Manage.
,
202
, p.
112159
.
5.
Cihan
,
Ö.
,
Doğan
,
H. E.
,
Kutlar
,
O. A.
,
Demirci
,
A.
, and
Javadzadehkalkhoran
,
M.
,
2020
, “
Evaluation of Heat Release and Combustion Analysis in Spark Ignition Wankel and Reciprocating Engine
,”
Fuel
,
261
, p.
116479
.
6.
Sadiq
,
G. A.
,
Tozer
,
G.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2017
, “
CFD Simulations of Compressed Air Two Stage Rotary Wankel Expander—Parametric Analysis
,”
Energy Convers. Manage.
,
142
, pp.
42
52
.
7.
Salanki
,
P. A.
, and
Wallace
,
J. S.
,
1996
, “
Evaluation of the Hydrogen-Fueled Rotary Engine for Hybrid Vehicle Applications
,” SAE Technical Paper, 960232.
8.
Jeng
,
D.-Z.
,
Hsieh
,
M.-J.
,
Lee
,
C.-C.
, and
Han
,
Y.
,
2013
, “
The Numerical Investigation on the Performance of Rotary Engine With Leakage, Different Fuels and Recess Sizes
,” SAE Technical Paper 2013-32-9160.
9.
Yontar
,
A. A.
,
2019
, “
Effects of Ethanol, Methyl Tert-Butyl Ether and Gasoline-Hydrogen Blend on Performance Parameters and HC Emission at Wankel Engine
,”
Biofuels
,
11
(
3
), pp.
377
388
.
10.
Amrouche
,
F.
,
Erickson
,
P. A.
,
Park
,
J. W.
, and
Varnhagen
,
S.
,
2016
, “
Extending the Lean Operation Limit of a Gasoline Wankel Rotary Engine Using Hydrogen Enrichment
,”
Int. J. Hydrogen Energy
,
41
(
32
), pp.
14261
14271
.
11.
Yang
,
J.
,
Ji
,
C.
,
Wang
,
S.
,
Zhang
,
Z.
,
Wang
,
D.
, and
Ma
,
Z.
,
2017
, “
Numerical Investigation of the Effects of Hydrogen Enrichment on Combustion and Emissions Formation Processes in a Gasoline Rotary Engine
,”
Energy Convers. Manage.
,
151
, pp.
136
146
.
12.
Ji
,
C.
,
Su
,
T.
,
Wang
,
S.
,
Zhang
,
B.
,
Yu
,
M.
, and
Cong
,
X.
,
2016
, “
Effect of Hydrogen Addition on Combustion and Emissions Performance of a Gasoline Rotary Engine at Part Load and Stoichiometric Conditions
,”
Energy Convers. Manage.
,
12
, pp.
272
280
.
13.
Yang
,
J.
,
Ji
,
C.
,
Wang
,
S.
,
Wang
,
D.
,
Ma
,
Z.
, and
Ma
,
L.
,
2018
, “
A Comparative Study of Mixture Formation and Combustion Processes in a Gasoline Wankel Rotary Engine With Hydrogen Port and Direct Injection Enrichment
,”
Energy Convers. Manage.
,
168
, pp.
21
31
.
14.
Fan
,
B.
,
Pan
,
J.
,
Yang
,
W.
,
Chen
,
W.
, and
Bani
,
S.
,
2017
, “
The Influence of Injection Strategy on Mixture Formation and Combustion Process in a Direct Injection Natural Gas Rotary Engine
,”
Appl. Energy
,
187
, pp.
663
674
.
15.
Falfari
,
S.
,
Bianchi
,
G. M.
, and
Nuti
,
L.
,
2012
, “
Numerical Comparative Analysis of In-Cylinder Tumble Flow Structures in Small PFI Engines Equipped by Heads Having Different Shapes and Squish Areas
,”
ASME Internal Combustion Engine Division Spring Technical Conference
, SAE Technical Paper 2012, 81095, pp.
715
725
.
16.
Falfari
,
S.
,
Brusiani
,
F.
, and
Bianchi
,
G. M.
,
2014
, “
Numerical Analysis of In-Cylinder Tumble Flow Structures—Parametric 0D Model Development
,”
Energy Procedia
,
45
, pp.
987
996
.
17.
Shepherd
,
I. G.
, and
Cheng
,
R. K.
,
2001
, “
The Burning Rate of Premixed Flames in Moderate and Intense Turbulence
,”
Combust. Flame
,
127
(
3
), pp.
2066
2075
.
18.
Arcoumanis
,
C.
,
Bae
,
C. S.
, and
Hu
,
Z.
,
1994
, “
Flow and Combustion in a Four-Valve, Spark-Ignition Optical Engine
,” SAE International Congress and Exposition, SAE Technical Paper, pp.
197
211
.
19.
Fan
,
L.
,
Reitz Rolf
,
D.
, and
Trigui
,
N.
,
1999
, “
Intake Flow Simulation and Comparison With PTV Measurements
,” SAE Technical Paper 1999-01-0176.
20.
Khoa
,
N. X.
, and
Lim
,
O.
,
2019
, “
The Effects of Combustion Duration on Residual Gas, Effective Release Energy, Engine Power and Engine Emissions Characteristics of the Motorcycle Engine
,”
Appl. Energy
,
248
, pp.
54
63
.
21.
Glover
,
A. R.
,
Hundleby
,
G. E.
, and
Hadded
,
O.
,
1988
, “
An Investigation Into Turbulence in Engines Using Scanning LDA
,” SAE Technical Paper 880379.
22.
Kyriakides
,
S. C.
, and
Glover
,
A. R.
,
1989
, “
A Study of the Correlation Between In-Cylinder Air Motion and Combustion in Gasoline Engines
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
203
(
34
), pp.
185
192
.
23.
Arcoumanis
,
C.
,
Hu
,
Z.
,
Vafidis
,
C.
, and
Whitelaw
,
J. H.
,
1990
, “
Tumbling Motion: A Mechanism for Turbulence Enhancement in Spark-Ignition Engines
,” SAE Technical Paper, Vol. 99, Section 3: Journal of Engines, Part 1, pp.
375
391
.
24.
Fan
,
B.
,
Pan
,
J.
,
Tang
,
A.
,
Pan
,
Z.
, and
Xue
,
H.
,
2015
, “
In of Port Timing on Flow Field and Combustion Process of Natural Gas-Fueled Rotary Engines
,”
Trans. Chin. Soc. Agric. Mach.
,
46
(
7
), pp.
286
293
[in Chinese].
25.
Lin
,
Q.
, and
Zhang
,
J.
,
2020
, “
Experimental Research on Volumetric Efficiency of Multi-Fuel Rotary Engine
,”
Guangdong Shipbuild.
,
4
(
1
), pp.
21
25
.
26.
Hwang
,
P. W.
,
Chen
,
X. C.
, and
Cheng
,
H. C.
,
2016
, “
Influences of Ignition Timing, Spark Plug and Intake Port Locations on the Combustion Performance of a Simulated Rotary Engine
,”
J. Mech.
,
32
(
5
), pp.
579
591
.
27.
Fan
,
B.
,
Pan
,
J.
,
Tang
,
A.
,
Pan
,
Z.
,
Zhu
,
Y. J.
, and
Xue
,
H.
,
2015
, “
Experimental and Numerical Investigation of the Fluid Flow in a Side-Ported Rotary Engine
,”
Energy Convers. Manage.
,
95
, pp.
385
397
.
28.
Liu
,
J.
,
2007
, “
Numerical Simulation of In-Cylinder Turbulent Flows of Internal Combustion Engines
,”
M.S. degree thesis
,
Dalian University of Technology
,
Dalian
[in Chinese].
29.
Lei
,
J.
,
Yu
,
Y.
,
Xin
,
Q.
,
Shen
,
L.
,
Song
,
G.
, and
Chen
,
L.
,
2020
, “
Investigation and Application of Systematic Design Method for Combustion Chamber of Diesel Engine
,”
Trans. Chin. Soc. Agric. Eng.
,
36
(
6
), pp.
36
46
[in Chinese].
30.
Convergent Science Corp. CONVERGE Theory Manual 2.4,
2018
.
31.
Vorraro
,
G.
,
Turner
,
M.
, and
Turner
,
J. W. G.
,
2019
, “
Testing of a Modern Wankel Rotary Engine—Part I: Experimental Plan, Development of the Software Tools and Measurement Systems
,”
Int. Powertrains Fuels Lubr. Meet.
32.
Otchere
,
P.
,
Pan
,
J.
,
Fan
,
B.
,
Chen
,
W.
,
Lu
,
Y.
, and
Jianxing
,
L.
,
2020
, “
Mixture Formation and Combustion Process of a Biodiesel Fueled Direct Injection Rotary Engine (DIRE) Considering Injection Timing, Spark Timing and Equivalence Ratio—CFD Study
,”
Energy Convers. Manage.
,
217
, p.
112948
.
33.
Fan
,
B.
,
Pan
,
J.
,
Liu
,
Y.
, and
Zhu
,
Y.
,
2015
, “
Effects of Ignition Parameters on Combustion Process of a Rotary Engine Fueled With Natural Gas
,”
Energy Convers. Manage.
,
103
, pp.
218
234
.
34.
Yang
,
J.
,
Ji
,
C.
,
Wang
,
S.
,
Wang
,
D.
,
Shi
,
C.
,
Ma
,
Z.
, and
Zhang
,
B.
,
2018
, “
Numerical Study of Hydrogen Direct Injection Strategy on Mixture Formation and Combustion Process in a Partially Premixed Gasoline Wankel Rotary Engine
,”
Energy Convers. Manage.
,
176
, pp.
184
193
.
35.
Zhu
,
T.
,
2017
, “
Study on Ignition Process Stability of Engine Premixed Turbulent Combustion
,”
M.S. degree thesis
,
Hefei University of Technology
,
Hefei
[in Chinese].
36.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.
You do not currently have access to this content.