Abstract

To analyze the influence of hydrous ethanol on the performance of the direct-injection engine, the three-dimensional simulation is carried out by using converge software coupled with the combustion mechanism of hydrous ethanol gasoline and the soot model. The combustion and soot generation characteristics of a direct-injection gasoline engine burning hydrous ethanol gasoline using exhaust gas recirculation (EGR) technology are investigated. It is found that the increase of the blending ratio of the hydrous ethanol can accelerate the flame propagation speed, shorten the combustion duration, and improve the combustion isovolumetric. The nucleation and growth of soot are jointly controlled by polycyclic aromatic hydrocarbons (PAHs) and the small molecular components such as C2H2. The oxygen content properties and high reactive OH of the hydrous ethanol-containing gasoline inhibit soot formation. Compared with pure gasoline, the carbon soot precursor mass is reduced by 60%, 54.5%, 73.3%, and 52.4% for 20% anhydrous ethanol blended with gasoline, A1, A2, A3, and A4, respectively, and the carbon soot mass is reduced by 63.6% and the carbon soot volume density is reduced by 40%. The introduction of EGR exhaust reduces the burning rate and leads to an increase in the production of carbon monoxide, hydrocarbon, and soot. However, the combination of EGR with hydrous ethanol gasoline can significantly improve the engine combustion environment and significantly reduce soot and PAHs concentrations. The impact of EGR also includes the ability to reduce combustion chamber temperatures and reduce NOx emissions from hydrous ethanol gasoline by 75%.

References

1.
Melaika
,
M.
,
Herbillon
,
G.
, and
Dahlander
,
P.
,
2021
, “
Spark Ignition Engine Performance, Standard Emissions and Particulates Using GDI, PFI-CNG and DI-CNG Systems
,”
Fuel
,
293
(
7–8
), pp.
120454
.
2.
Chen
,
L.
,
Liang
,
Z.
,
Zhang
,
X.
, and
Shuai
,
S.
,
2017
, “
Characterizing Particulate Matter Emissions From GDI and PFI Vehicles Under Transient and Cold Start Conditions
,”
Fuel
,
189
, pp.
131
140
.
3.
Salib
,
G.
,
Saleh
,
R.
,
Zhao
,
Y.
,
Presto
,
A. A.
,
Lambe
,
A. T.
,
Frodin
,
B.
,
Sardar
,
S.
, et al
,
2017
, “
Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts
,”
Environ. Sci. Technol.
,
51
(
6
), pp.
6542
6552
.
4.
An
,
Y.
,
Jaasim
,
M.
,
Raman
,
V.
,
Im
,
H. G.
, and
Johansson
,
B.
,
2018
, “
In-Cylinder Combustion and Soot Evolution in the Transition From Conventional CI Mode to PPC
,”
Energy Fuels
,
32
(
2
), pp.
2306
2320
.
5.
McCaffery
,
C.
,
Durbin
,
T. D.
,
Johnson
,
K. C.
, and
Karavalakis
,
G.
,
2020
, “
The Effect of Ethanol and iso-Butanol Blends on Polycyclic Aromatic Hydrocarbon (PAH) Emissions From PFI and GDI Vehicles
,”
Atmos. Pollut. Res.
,
11
(
11
), pp.
2056
2067
.
6.
Liu
,
F.
,
Hua
,
Y.
,
Wu
,
H.
,
Lee
,
C.
, and
Li
,
Y.
,
2018
, “
Experimental Investigation of Polycyclic Aromatic Hydrocarbons Growth Characteristics of Gasoline Mixed With Methanol, Ethanol, or n -Butanol in Laminar Diffusion Flames
,”
Energy Fuels.
,
32
(
6
), pp.
6823
6833
.
7.
Koupaie
,
M. M.
,
Cairns
,
A.
,
Vafamehr
,
H.
, and
Lanzanova
,
T. D. M.
,
2019
, “
A Study of Hydrous Ethanol Combustion in an Optical Central Direct Injection Spark Ignition Engine
,”
Appl. Energy
,
237
(
3
), pp.
258
269
.
8.
Myung
,
C. L.
,
Choi
,
K.
,
Cho
,
J.
,
Kim
,
K.
,
Baek
,
S.
,
Lim
,
Y.
, and
Park
,
S.
,
2020
, “
Evaluation of Regulated, Particulate, and BTEX Emissions Inventories From a Gasoline Direct Injection Passenger Car With Various Ethanol Blended Fuels Under Urban and Rural Driving Cycles in Korea
,”
Fuel
,
262
(
2
), p.
116406
.
9.
Luo
,
Y.
,
Zhu
,
L.
,
Fang
,
J.
,
Zhuang
,
Z.
,
Guan
,
C.
,
Xia
,
C.
,
Xie
,
X.
, and
Huang
,
Z.
,
2015
, “
Size Distribution, Chemical Composition and Oxidation Reactivity of Particulate Matter From Gasoline Direct Injection (GDI) Engine Fueled With Ethanol-Gasoline Fuel
,”
Appl. Therm. Eng.
,
89
(
10
), pp.
647
655
.
10.
Gailis
,
M.
,
Pirs
,
V.
,
Jansons
,
M.
,
Birzietis
,
G.
, et al
An Experimental Investigation on Aldehyde and Methane Emissions from Hydrous Ethanol and Gasoline Fueled SI Engine
.
SAE Technical Paper; 2020-01-2047
.
11.
Venugopal
,
T.
,
Sharma
,
A.
,
Satapathy
,
S.
,
Ramesh
,
A.
, and
Gajendra Babu
,
M. K.
,
2013
, “
Experimental Study of Hydrous Ethanol Gasoline Blend (E10) in a Four Stroke Port Fuel-Injected Spark Ignition Engine
,”
Int. J. Energy Res.
,
37
(
6
), pp.
638
644
.
12.
Mohammed
,
M. K.
,
Balla
,
H. H.
,
Al-Dulaimi
,
Z. M. H.
,
Kareem
,
Z. S.
, and
Al-Zuhairy
,
M. S.
,
2021
, “
Effect of Ethanol-Gasoline Blends on SI Engine Performance and Emissions
,”
Case Stud. Therm. Eng.
,
25
(
6
), p.
100891
.
13.
Doğan
,
B.
,
Erol
,
D.
,
Yaman
,
H.
, and
Kodanli
,
E.
,
2017
, “
The Effect of Ethanol-Gasoline Blends on Performance and Exhaust Emissions of a Spark Ignition Engine Through Exergy Analysis
,”
Appl. Therm. Eng.
,
120
(
6
), pp.
433
443
.
14.
Maricq
,
M. M.
,
Szente
,
J. J.
, and
Jahr
,
K.
,
2012
, “
The Impact of Ethanol Fuel Blends on PM Emissions From a Light-Duty GDI Vehicle
,”
Aerosol Sci. Technol.
,
46
(
5
), pp.
576
583
.
15.
Belgiorno
,
G.
,
Di Blasio
,
G.
,
Shamun
,
S.
,
Beatrice
,
C.
,
Tunestål
,
P.
, and
Tunér
,
M.
,
2018
, “
Performance and Emissions of Diesel-Gasoline-Ethanol Blends in a Light Duty Compression Ignition Engine
,”
Fuel
,
217
(
Apr. 1
), pp.
78
90
.
16.
Yusoff
,
M. N. A. M.
,
Zulkifli
,
N. W. M.
,
Masjuki
,
H. H.
,
Harith
,
M. H.
,
Syahir
,
A. Z.
,
Khuong
,
L. S.
,
Zaharin
,
M. S. M.
, and
Alabdulkarem
,
A.
,
2018
, “
Comparative Assessment of Ethanol and Isobutanol Addition in Gasoline on Engine Performance and Exhaust Emissions
,”
J. Cleaner Prod.
,
190
(
Jul. 20
), pp.
483
495
.
17.
Malmborg
,
V. B.
,
Eriksson
,
A. C.
,
Shen
,
M.
,
Nilsson
,
P.
,
Gallo
,
Y.
,
Waldheim
,
B.
,
Martinsson
,
J.
,
Andersson
,
Ö
, and
Pagels
,
J.
,
2017
, “
Evolution of In-Cylinder Diesel Engine Soot and Emission Characteristics Investigated With Online Aerosol Mass Spectrometry
,”
Environ. Sci. Technol.
,
51
(
3
), pp.
1876
1685
.
18.
Liu
,
F.
,
Guo
,
H.
,
Smallwood
,
G. J.
, and
Gülder
,
Ö. L.
,
2001
, “
The Chemical Effects of Carbon Dioxide as an Additive in an Ethylene Diffusion Flame: Implications for Soot and NOx, Formation
,”
Combust. Flame
,
125
(
1
), pp.
778
787
.
19.
Oh
,
K. C.
, and
Shin
,
H. D.
,
2006
, “
The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Non-premixed Flames
,”
Fuel
,
85
(
5
), pp.
615
624
.
20.
Jain
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of Split Fuel Injection and EGR on NOx and PM Emission Reduction in a Low Temperature Combustion Mode Diesel Engine
,”
Energy
,
122
(
Mar. 1
), pp.
249
264
.
21.
Pan
,
M.
,
Huang
,
R.
,
Liao
,
J.
,
Ouyang
,
T.
,
Zheng
,
Z.
,
Lv
,
D.
, and
Huang
,
H.
,
2018
, “
Effect of EGR Dilution on Combustion, Performance and Emission Characteristics of a Diesel Engine Fueled With n-Pentanol and 2-Ethylhexyl Nitrate Additive
,”
Energy Convers. Manage.
,
176
(
11
), pp.
246
255
.
22.
Belgiorno
,
G.
,
Dimitrakopoulos
,
N.
,
Di Blasio
,
G.
,
Beatrice
,
C.
,
Tunestål
,
P.
, and
Tunér
,
M.
,
2018
, “
Effect of the Engine Calibration Parameters on Gasoline Partially Premixed Combustion Performance and Emissions Compared to Conventional Diesel Combustion in a Light-Duty Euro 6 Engine
,”
Appl. Energy
,
228
(
10
), pp.
2221
2234
.
23.
Wang
,
F. J.
,
2014
,
Computational Fluid Dynamics Analysis-CFD Software Principle and Application
,
Tsinghua University Press
,
China
.
24.
Duan
,
Y.
,
Shi
,
X.
,
Kang
,
Y.
,
Liao
,
Y.
, and
Duan
,
L.
,
2020
,
Effect of Hydrous Ethanol Combined With EGR on Performance of GDI Engine
,
SAE Technical Paper
.
25.
Wu
,
X.
,
Zhang
,
S.
,
Guo
,
X.
,
Yang
,
Z.
,
Liu
,
J.
,
He
,
L.
,
Zheng
,
X.
,
Han
,
L.
,
Liu
,
H.
, and
Wu
,
Y.
,
2019
, “
Assessment of Ethanol Blended Fuels for Gasoline Vehicles in China: Fuel Economy, Regulated Gaseous Pollutants and Particulate Matter
,”
Environ. Pollut.
,
253
(
7
), pp.
731
740
.
26.
Deng
,
X.
,
Chen
,
Z.
,
Wang
,
X.
,
Zhen
,
H.
, and
Xie
,
R.
,
2018
, “
Exhaust Noise, Performance and Emission Characteristics of Spark Ignition Engine Fuelled With Pure Gasoline and Hydrous Ethanol Gasoline Blends
,”
Case Stud. Therm. Eng.
,
12
(
2
), pp.
55
63
.
27.
Wang
,
X.
,
Chen
,
Z.
,
Ni
,
J.
,
Liu
,
S.
, and
Zhou
,
H.
,
2015
, “
The Effects of Hydrous Ethanol Gasoline on Combustion and Emission Characteristics of a Port Injection Gasoline Engine
,”
Case Stud. Therm. Eng.
,
6
(
9
), pp.
147
154
.
28.
Shi
,
X.
,
Qian
,
W.
,
Wang
,
Q.
,
Luo
,
H.
,
Kang
,
Y.
, and
Ni
,
J.
,
2021
, “
Effect of Water Content of Hydrous Ethanol on Chemical Kinetic Characteristics Based on the New Developed Reduced Ethanol-Toluene Reference Fuels Mechanism
,”
Fuel
,
303
(
6
), p.
121201
.
29.
Baratta
,
M.
, and
D'Ambrosio
,
S.
,
2017
,
Further Investigation of RNG k-ɛ Model Capabilities in the Simulation of In-Cylinder Turbulent Flows(Computation Technology)
,
The Japan Society of Mechanical Engineers
,
Japan
.
30.
Liu
,
R. C.
,
Jia-Ling
,
L. E.
,
Yang
,
S. H.
,
Zheng
,
Z. H.
, and
Huang
,
Y.
,
2017
, “
Application of KH-RT Model in Process of Spray Jet Breakup in Across-Flow
,”
J. Propul. Technol.
,
38
(
7
), pp.
1595
1602
.
31.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
,
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,
Los Alamos Laboratory
,
NM
.
32.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,”
SAE Trans.
,
109
(
3
), pp.
281
298
.
33.
Lv
,
H.
,
2017
, “
Simulation Study on Effect of Exhaust gas Recirculation on Performance of Hydrous Gasoline Dual Fuel Engine
,”
Master Thesis
,
Jilin University
,
China
.
34.
Forte
,
C.
,
Bianchi
,
G. M.
,
Corti
,
E.
,
Michele
,
B.
, and
Stefano
,
F.
,
2014
, “
Evaluation of the Mixture Formation Process of High Performance Engine with a Combined Experimental and Numerical Methodology
,”
Energy Procedia
,
45
(
1
), pp.
869
878
.
35.
An
,
Y. Z.
,
Pei
,
Y.-q.
,
Qin
,
J.
,
Zhao
,
H.
,
Teng
,
S.-p.
,
Li
,
B.
, and
Li
,
X.
,
2016
, “
Development of a PAH (Polycyclic Aromatic Hydrocarbon) Formation Model for Gasoline Surrogates and Its Application for GDI (Gasoline Direct Injection) Engine CFD (Computational Fluid Dynamics) Simulation
,”
Energy
,
94
(
1
), pp.
367
379
.
You do not currently have access to this content.