Abstract

Drillstring vibration is a major concern during drilling wellbore, and it can be split into three types: axial, torsional, and lateral. Many problems associate with the high drillstring vibrations as tear and wear in downhole tools, inefficient drilling performance, loss of mechanical energy, and hole wash-out. The high cost for the downhole measurement of the drillstring vibrations encourages machine learning applications toward downhole vibration prediction during drilling. Consequently, the objective of this paper is to develop an artificial neural network (ANN) model for predicting the drillstring vibration while drilling a horizontal section. The ANN model uses the surface drilling parameters as model inputs to predict the three types of drillstring vibrations. These surface drilling parameters are flowrate, mud pumping pressure, surface rotating speed, top drive torque, weight on bit, and rate of penetration. The study utilized a data set of 13,927 measurements from a horizontal well that was used to train the ANN model. In addition, a different data set (9284 measurements) was employed to validate the developed ANN model. Correlation coefficient (R) and average absolute percentage error (AAPE) are statistical metrics that are used to evaluate the model accuracy based on the difference between the actual and predicted values for the axial, torsional, and lateral vibrations. The results of the optimized parameters for the developed model showed a high correlation coefficient between the predicted and the actual drillstring vibrations that showed R higher than 0.95 and AAPE below 3.5% for all phases of model training, testing, and validation. The developed model proposed a model-based equation for real-time estimation for the downhole vibrations.

References

1.
Okoli
,
P.
,
Cruz Vega
,
J.
, and
Shor
,
R.
,
2019
, “
Estimating Downhole Vibration via Machine Learning Techniques Using Only Surface Drilling Parameters
,”
SPE Western Regional Meeting Proceedings
,
San Jose, CA
,
April
, p.
195334
.
2.
Bailey
,
J. R.
,
Biediger
,
E.
,
Gupta
,
V.
,
Ertas
,
D.
,
Elks
,
W. C.
, and
Dupriest
,
F. E.
,
2008
, “
Drilling Vibrations Modeling and Field Validation
,”
SPE/IADC Drilling Conference Proceedings
,
Orlando, FL
,
March
, Vol.
2
, pp.
825
839
.
3.
Millan
,
E.
,
Ringer
,
M.
,
Boualleg
,
R.
, and
Li
,
D.
,
2019
, “
Real-Time Drillstring Vibration Characterization Using Machine Learning
,”
SPE/IADC Drilling Conference Proceedings
,
March
, pp.
5
7
.
4.
Hegde
,
C.
,
Pyrcz
,
M.
,
Millwater
,
H.
,
Daigle
,
H.
, and
Gray
,
K.
,
2020
, “
Fully Coupled End-to-End Drilling Optimization Model Using Machine Learning
,”
J. Pet. Sci. Eng.
,
186
, p.
106681
.
5.
Osnes
,
S. M.
,
Amundsen
,
P. A.
,
Weltzin
,
T.
,
Nyrnes
,
E.
, and
Grindhaug
,
G.
,
2009
, “
Vibration Measurements: A Time for Standardisation
,”
SPE/IADC Drilling Conference Proceedings
,
Amsterdam, The Netherlands
,
March
, Vol.
2
, pp.
1112
1118
.
6.
Brett
,
J. F.
,
Warren
,
T. M.
, and
Behr
,
S. M.
,
1989
, “
Bit Whirl: A New Theory of PDC Bit Failure
,”
SPE Annual Technical Conference and Exhibition
,
OnePetro
.
7.
Zhao
,
J.
,
Shen
,
Y.
,
Chen
,
W.
,
Zhang
,
Z.
, and
Johnston
,
S.
,
2017
, “
Machine Learning–Based Trigger Detection of Drilling Events Based on Drilling Data
,”
SPE Eastern Regional Meeting Proceedings
,
Oct. 2017
, p.
187512
.
8.
Hegde
,
C.
,
Millwater
,
H.
, and
Gray
,
K.
,
2019
, “
Classification of Drilling Stick Slip Severity Using Machine Learning
,”
J. Pet. Sci. Eng.
,
179
, pp.
1023
1036
.
9.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Al-AbdulJabbar
,
A.
,
Moussa
,
T.
,
Gamal
,
H.
, and
Shehri
,
D. A.
,
2020
, “
Artificial Neural Networks Model for Prediction of the Rate of Penetration While Horizontally Drilling Carbonate Formations
,”
Proceedings of the 54th U.S. Rock Mechanics/Geomechanics Symposium
,
Golden, CO
,
June 28–July 1
, pp.
2
3
.
10.
Al-Abduljabbar
,
A.
,
Gamal
,
H.
, and
Elkatatny
,
S.
,
2020
, “
Application of Artificial Neural Network to Predict the Rate of Penetration for S-Shape Well Profile
,”
Arab. J. Geosci.
,
13
(
16
), pp.
1
11
.
11.
Alsabaa
,
A.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2020
, “
Real-Time Prediction of Rheological Properties of Invert Emulsion Mud Using Adaptive Neuro-fuzzy Inference System
,”
Sensors (Switzerland)
,
20
(
6
), p.
1669
.
12.
Alsabaa
,
A.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
New Correlations for Better Monitoring the All-Oil Mud Rheology by Employing Artificial Neural Networks
,”
Flow Meas. Instrum.
,
78
, p.
101914
.
13.
Alsabaa
,
A.
,
Gamal
,
H. A.
,
Elkatatny
,
S. M.
, and
Abdulraheem
,
A.
,
2020
, “
Real-Time Prediction of Rheological Properties of All-Oil Mud Using Artificial Intelligence
,”
Proceedings of the 54th U.S. Rock Mechanics/Geomechanics Symposium
,
Golden, CO
,
June 28–July 1
, p.
2
,
OnePetro
.
14.
Ahmed
,
A.
,
Elkatatny
,
S.
,
Gamal
,
H.
, and
Abdulraheem
,
A.
,
2021
, “
Artificial Intelligence Models for Real-Time Bulk Density Prediction of Vertical Complex Lithology Using the Drilling Parameters
,”
Arab. J. Sci. Eng.
, pp.
1
14
.
15.
Gamal
,
H.
,
Alsaihati
,
A.
,
Elkatatny
,
S.
,
Haidary
,
S.
, and
Abdulraheem
,
A.
,
2021
, “
Rock Strength Prediction in Real-Time While Drilling Employing Random Forest and Functional Network Techniques
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p. 093004.
16.
Mahmoud
,
A. A.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Alsaihati
,
A.
,
2022
, “
Estimating the Total Organic Carbon for Unconventional Shale Resources During the Drilling Process: A Machine Learning Approach
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p. 043004.
17.
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2020
, “
Rock Drillability Intelligent Prediction for a Complex Lithology Using Artificial Neural Network
,”
SPE—Abu Dhabi International Petroleum Exhibition Conference, 2020
,
Abu Dhabi, UAE
,
Nov. 9–12
, pp.
1
3
.
18.
Gowida
,
A.
,
Elkatatny
,
S.
, and
Gamal
,
H.
,
2021
, “
Unconfined Compressive Strength (UCS) Prediction in Real-Time While Drilling Using Artificial Intelligence Tools
,”
Neural Comput. Appl.
,
7
, pp.
1
12
.
19.
Sidddig
,
O.
,
Gamal
,
H.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2022
, “
Applying Different Artificial Intelligence Techniques in Dynamic Poisson’s Ratio Prediction Using Drilling Parameters
,”
ASME J. Energy Resour. Technol.
, 144(7), p. 073006.
20.
Mabile
,
C.
,
Desplans
,
J. P.
, and
Pavone
,
D.
,
1996
, “
A New Way of Using Surface Measurements to Detect Down Hole Vibrations
,” Paper presented at the European Petroleum Conference, Oct. 22–24,
Paper No. SPE-36883-MS
, Society of Petroleum Engineers (SPE).
21.
Ertas
,
D.
,
Bailey
,
J. R.
,
Wang
,
L.
, and
Pastusek
,
P. E.
,
2014
, “
Drillstring Mechanics Model for Surveillance, Root Cause Analysis, and Mitigation of Torsional Vibrations
,”
SPE Drill. Complet.
,
29
(
04
), pp.
405
417
.
22.
Lai
,
S. W.
,
Wood
,
M.
,
Eddy
,
A.
,
Holt
,
T.
, and
Bloom
,
M.
,
2014
, “
Stick-Slip Detection and Friction Factor Testing Using Surface-Based Torque and Tension Measurements
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
, Vol.
1
,
Lexington, KY
,
October
, pp.
609
626
.
23.
Baumgartner
,
T.
, and
van Oort
,
E.
,
2014
, “
Pure and Coupled Drillstring Vibration Pattern Recognition in High Frequency Downhole Data
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
, Vol.
7
,
Amsterdam, The Netherlands
,
October
, pp.
4950
4972
.
24.
Pollock
,
J.
,
Stoecker-Sylvia
,
Z.
,
Veedu
,
V.
,
Panchal
,
N.
, and
Elshahawi
,
H.
,
2018
, “
Machine Learning for Improved Directional Drilling
,”
Proceedings of Annual Offshore Technology Conference
, Vol.
4
,
Houston, TX
,
April
, pp.
2496
2504
.
25.
Zha
,
Y.
, and
Pham
,
S.
,
2019
, “
Monitoring Downhole Drilling Vibrations Using Surface Data Through Deep Learning
,”
Proceedings of 2018 SEG International Exposition and Annual Meeting
,
Anaheim, CA
,
October
, pp.
2101
2105
.
26.
Ignova
,
M.
,
Matheus
,
J.
,
Amaya
,
D.
, and
Richards
,
E.
,
2019
, “
Recognizing Abnormal Shock Signatures During Drilling with Help of Machine Learning
,”
SPE Middle East Oil Gas Show Conference MEOS Proceedings
,
Manama, Bahrain
,
Mar. 18–21
, p.
2
.
27.
Wiktorski
,
E.
,
Geekiyanage
,
S.
,
Løken
,
E.
, and
Sui
,
D.
,
2019
, “
Comparative Study of Surface and Downhole Drillstring Vibrations Measurements on a Laboratory-Scale Drilling Rig
,”
SPE Norway One Day Seminar
,
Bergen, Norway
,
May 14
, pp.
2
3
.
28.
Gupta
,
S.
,
Chatar
,
C.
, and
Celaya
,
J. R.
,
2019
, “
Machine Learning Lessons Learnt in Stick-Slip Prediction
,”
SPE Abu Dhabi International Petroleum Exhibition and Conference 2019, ADIP 2019
,
Abu Dhabi, UAE
,
Nov. 11–14
, pp.
1
3
.
29.
Bello
,
O.
,
Holzmann
,
J.
,
Yaqoob
,
T.
, and
Teodoriu
,
T.
,
2015
, “
Application of Artificial Intelligence Methods in Drilling System Design and Operations: A Review of the State of the Art
,”
J. Artif. Intell. Soft Comput. Res.
,
5
(
2
), pp.
121
139
.
30.
Abbas
,
A. K.
,
Rushdi
,
S.
,
Alsaba
,
M.
, and
Al Dushaishi
,
M. F.
,
2019
, “
Drilling Rate of Penetration Prediction of High-Angled Wells Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112904
.
31.
Cevik
,
A.
,
Sezer
,
E. A.
,
Cabalar
,
A. F.
, and
Gokceoglu
,
C.
,
2011
, “
Modeling of the Uniaxial Compressive Strength of Some Clay-Bearing RocksUsing Neural Network
,”
Appl. Soft Comput.
,
11
(
2
), pp.
2587
2594
.
32.
Lippmann
,
R. P.
,
1987
, “
An Introduction to Computing with Neural Nets
,”
IEEE ASSP Mag.
,
4
(
2
), pp.
4
22
.
33.
Graves
,
A.
,
Liwicki
,
M.
,
Fernández
,
S.
,
Bertolami
,
R.
,
Bunke
,
H.
, and
Schmidhuber
,
J.
,
2009
, “
A Novel Connectionist System for Unconstrained Handwriting Recognition
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
31
(
5
), pp.
855
868
.
You do not currently have access to this content.