Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The effects of hydrogen fraction (HF: volumetric fraction of H2 in the fuel mixture of CH4 + H2) from 0% to 100% by volume, on the thermal and environmental performance of a 207-MW industrial water tube boiler, are investigated numerically at a fixed excess air factor, λ = 1.15. This study aims to determine the hardware modifications required for boilers to be retrofitted for pure hydrogen operation and investigates how NOx emissions are affected by hydrogen enrichment. The results showed insignificant increases in maximum combustion temperature with increasing the HF, though the distributions of temperature profiles are distinct. In reference to the basic methane combustion, H2 flames resulted in a positive temperature rise in the vicinity of the burner. Increasing the HF from 0% to 2% resulted in higher average thermal NOx emissions at the boiler exit section from 37 up to 1284 ppm, then it decreased to 1136 ppm at HF = 30%, and later it leveled up to 1474 ppm at HF = 100%. The spots for higher differences in NO formation compared to the reference case are shifted downstream at higher HFs. The effect of hydrogen enrichment on CO2 and H2O as radiation sources, as well as the volumetric absorption radiation of the furnace wall and the heat flux at furnace surfaces, has all been presented in relation to the effect of hydrogen addition on boiler performance.

References

1.
Steinberg
,
M.
, and
Cheng
,
H. C.
,
1989
, “
Modern and Prospective Technologies for Hydrogen Production From Fossil Fuels
,”
Int. J. Hydrogen Energy
,
14
(
11
), pp.
797
820
.
2.
Colbertaldo
,
P.
,
Agustin
,
S. B.
,
Campanari
,
S.
, and
Brouwer
,
J.
,
2019
, “
Impact of Hydrogen Energy Storage on California Electric Power System: Towards 100% Renewable Electricity
,”
Int. J. Hydrogen Energy
,
44
(
19
), pp.
9558
9576
.
3.
McKenna
,
R. C.
,
Bchini
,
Q.
,
Weinand
,
J. M.
,
Michaelis
,
J.
,
König
,
S.
,
Köppel
,
W.
, and
Fichtner
,
W.
,
2018
, “
The Future Role of Power-to-Gas in the Energy Transition: Regional and Local Techno-Economic Analyses in Baden-Württemberg
,”
Appl. Energy
,
212
, pp.
386
400
.
4.
Tetteh
,
D. A.
, and
Salehi
,
S.
,
2023
, “
The Blue Hydrogen Economy: A Promising Option for the Near-to-Mid-Term Energy Transition
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
042701
.
5.
Cecere
,
D.
,
Giacomazzi
,
E.
, and
Ingenito
,
A.
,
2014
, “
A Review on Hydrogen Industrial Aerospace Applications
,”
Int. J. Hydrogen Energy
,
39
(
20
), pp.
10731
10747
.
6.
Ball
,
M.
, and
Wietschel
,
M.
,
2009
, “
The Future of Hydrogen–Opportunities and Challenges
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
615
627
.
7.
Gondal
,
I. A.
,
2019
, “
Hydrogen Integration in Power-to-Gas Networks
,”
Int. J. Hydrogen Energy
,
44
(
3
), pp.
1803
1815
.
8.
Karayel
,
G. K.
,
Javani
,
N.
, and
Dincer
,
I.
,
2023
, “
Green Hydrogen Production Potential in Turkey With Wind Power
,”
Int. J. Green Energy
,
20
(
2
), pp.
129
138
.
9.
Hu
,
E.
,
Huang
,
Z.
,
He
,
J.
,
Jin
,
C.
, and
Zheng
,
J.
,
2009
, “
Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane–Hydrogen–Air Flames
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4876
4888
.
10.
Ilbas
,
M.
,
Crayford
,
A.
,
Yilmaz
,
I.
,
Bowen
,
P.
, and
Syred
,
N.
,
2006
, “
Laminar-Burning Velocities of Hydrogen–Air and Hydrogen–Methane–Air Mixtures: An Experimental Study
,”
Int. J. Hydrogen Energy
,
31
(
12
), pp.
1768
1779
.
11.
Di Sarli
,
V.
, and
Di Benedetto
,
A.
,
2007
, “
Laminar Burning Velocity of Hydrogen–Methane/Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
32
(
5
), pp.
637
646
.
12.
Taamallah
,
S.
,
Vogiatzaki
,
K.
,
Alzahrani
,
F. M.
,
Mokheimer
,
E. M. A.
,
Habib
,
M. A.
, and
Ghoniem
,
A. F.
,
2015
, “
Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Gas Turbine Combustion: Technology, Fundamentals, and Numerical Simulations
,”
Appl. Energy
,
154
, pp.
1020
1047
.
13.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
, E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.
14.
Zhen
,
H. S.
,
Cheung
,
C. S.
,
Leung
,
C. W.
, and
Choy
,
Y. S.
,
2012
, “
Effects of Hydrogen Concentration on the Emission and Heat Transfer of a Premixed LPG-Hydrogen Flame
,”
Int. J. Hydrogen Energy
,
37
(
7
), pp.
6097
6105
.
15.
Sorgulu
,
F.
,
Ozturk
,
M.
,
Javani
,
N.
, and
Dincer
,
I.
,
2023
, “
Experimental Investigation for Combustion [Q10]Performance of Hydrogen and Natural Gas Fuel Blends
,”
Int. J. Hydrogen Energy.
,
48
, pp.
34476
344854
.
16.
Yan
,
Y.
,
Liu
,
Z.
, and
Liu
,
J.
,
2023
, “
An Evaluation of the Conversion of Gasoline and Natural Gas Spark Ignition Engines to Ammonia/Hydrogen Operation From the Perspective of Laminar Flame Speed
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
012302
.
17.
Du Toit
,
M. H.
,
Avdeenkov
,
A. V.
, and
Bessarabov
,
D.
,
2018
, “
Reviewing H2 Combustion: A Case Study for Non-Fuel-Cell Power Systems and Safety in Passive Autocatalytic Recombiners
,”
Energy Fuels
,
32
(
6
), pp.
6401
6422
.
18.
Cellek
,
M. S.
, and
Pınarbaşı
,
A.
,
2018
, “
Investigations on Performance and Emission Characteristics of an Industrial low Swirl Burner While Burning Natural Gas, Methane, Hydrogen-Enriched Natural Gas and Hydrogen as Fuels
,”
Int. J. Hydrogen Energy
,
43
(
2
), pp.
1194
1207
.
19.
Ozturk
,
M.
, and
Dincer
,
I.
,
2022
, “
System Development and Assessment for Green Hydrogen Generation and Blending With Natural Gas
,”
Energy
,
261
, p.
125233
.
20.
Mahajan
,
D.
,
Tan
,
K.
,
Venkatesh
,
T.
,
Kileti
,
P.
, and
Clayton
,
C. R.
,
2022
, “
Hydrogen Blending in Gas Pipeline Networks—A Review
,”
Energies
,
15
(
10
), p.
3582
.
21.
Anand
,
T.
, and
Debbarma
,
S.
,
2024
, “
Experimental Analysis of Hydrogen Enrichment in Waste Plastic Oil Blends for Dual-Fuel Common Rail Direct Injection Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
146
(
1
), p.
012302
.
22.
Sun
,
Y.
,
Zhang
,
Y.
,
Huang
,
M.
,
Li
,
Q.
,
Wang
,
W.
,
Zhao
,
D.
,
Cheng
,
S.
, et al
,
2022
, “
Effect of Hydrogen Addition on the Combustion and Emission Characteristics of Methane Under Gas Turbine Relevant Operating Condition
,”
Fuel
,
324
, p.
124707
.
23.
Dutka
,
M.
,
Ditaranto
,
M.
, and
Løvås
,
T.
,
2016
, “
NOX Emissions and Turbulent Flow Field in a Partially Premixed Bluff Body Burner With CH4 and H2 Fuels
,”
Int. J. Hydrogen Energy
,
41
(
28
), pp.
12397
12410
.
24.
Naha
,
S.
, and
Aggarwal
,
S. K.
,
2004
, “
Fuel Effects on NOx Emissions in Partially Premixed Flames
,”
Combust. Flame
,
139
(
1–2
), pp.
90
105
.
25.
Ferrarotti
,
M.
,
De Paepe
,
W.
, and
Parente
,
A.
,
2021
, “
Reactive Structures and NOx Emissions of Methane/Hydrogen Mixtures in Flameless Combustion
,”
Int. J. Hydrogen Energy
,
46
(
68
), pp.
34018
34045
.
26.
Funke
,
H.-W.
,
Börner
,
S.
,
Keinz
,
J.
,
Kusterer
,
K.
,
Kroniger
,
D.
,
Kitajima
,
J.
,
Kazari
,
M.
, and
Horikawa
,
A.
,
2012
, “
Numerical and Experimental Characterization of Low NOx Micromix Combustion Principle for Industrial Hydrogen Gas Turbine Applications
,”
Turbo Expo: Power for Land, Sea, and Air
,
Copenhagen, Denmark
,
June 11–15
,
American Society of Mechanical Engineers
.
27.
Ayed
,
A. H.
,
Kusterer
,
K.
,
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Striegan
,
C.
, and
Bohn
,
D.
,
2015
, “
Experimental and Numerical Investigations of the Dry-Low-NOx Hydrogen Micromix Combustion Chamber of an Industrial Gas Turbine
,”
Propuls. Power Res.
,
4
(
3
), pp.
123
131
.
28.
El-Ghafour
,
S.
,
El-Dein
,
A.
, and
Aref
,
A.
,
2010
, “
Combustion Characteristics of Natural Gas–Hydrogen Hybrid Fuel Turbulent Diffusion Flame
,”
Int. J. Hydrogen Energy
,
35
(
6
), pp.
2556
2565
.
29.
Kobayashi
,
N.
,
Inoue
,
H.
,
Koizumi
,
H.
, and
Watanabe
,
T.
,
2003
, “
Robust Design of the Coaxial Jet Cluster Nozzle Burner for DME (Dimethyl Ether) Fuel
,”
Turbo Expo: Power for Land, Sea, and Air
,
Atlanta, GA
,
June 16–19
.
30.
Asai
,
T.
,
Dodo
,
S.
,
Karishuku
,
M.
,
Yagi
,
N.
,
Akiyama
,
Y.
, and
Hayashi
,
A.
,
2014
, “
Multiple-Injection Dry Low-NOx Combustor for Hydrogen-Rich Syngas Fuel: Testing and Evaluation of Performance in an IGCC Pilot Plant
,”
Mech. Eng. J.
,
1
(
5
), pp.
TEP0044
TEP0044
.
31.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.
32.
Haque
,
M. A.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Mansir
,
I. B.
, and
Habib
,
M. A.
,
2020
, “
Review of Fuel/Oxidizer-Flexible Combustion in Gas Turbines
,”
Energy Fuels
,
34
(
9
), pp.
10459
10485
.
33.
Fenimore
,
C.
,
1979
, “
Studies of Fuel-Nitrogen Species in Rich Flame Gases
,”
Symposium (International) on Combustion
,
Leeds, UK
,
Aug. 20–25
,
Elsevier
.
34.
Bowman
,
C. T.
,
1975
, “
Kinetics of Pollutant Formation and Destruction in Combustion
,”
Prog. Energy Combust. Sci.
,
1
(
1
), pp.
33
45
.
35.
Rodrigues
,
N. S.
,
Busari
,
T.
,
William
,
C. B. Senior
,
Chen
,
Y. T.
,
North
,
A.
,
Portillo
,
J. E.
,
Meyer
,
S. E.
, and
Lucht
,
R. P.
,
2018
, “
Development and Performance of a Perforated Plate Burner Under Relevant Gas Turbine Engine Conditions
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
.
36.
Sun
,
K.
,
Liu
,
X.
,
Ao
,
T.
,
Liu
,
L.
, and
Liang
,
Z.
,
2023
, “
Experiment and Numerical Simulation Study of Low-Nitrogen Combustion Technology Inside Small Gas Boiler
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
104501
.
37.
Aktas
,
F.
,
2022
, “
Numerical Investigation of Equivalence Ratio Effects on a Converted Diesel Engine Using Natural Gas
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
092305
.
38.
Davis
,
L.
, and
Black
,
S.
,
2000
,
Dry Low NOx Combustion Systems for GE Heavy-Duty Gas Turbines GE Power Systems Schenectady
,
ASME
,
New York
.
39.
García-Armingol
,
T.
, and
Ballester
,
J.
,
2015
, “
Operational Issues in Premixed Combustion of Hydrogen-Enriched and Syngas Fuels
,”
Int. J. Hydrogen Energy
,
40
(
2
), pp.
1229
1243
.
40.
Fackler
,
K. B.
,
Karalus
,
M. F.
,
Novosselov
,
I. V.
,
Kramlich
,
J. C.
, and
Malte
,
P. C.
,
2011
,
Experimental and Numerical Study of NOx Formation From the Lean Premixed Combustion of CH4 Mixed With CO2 and N2
.
41.
Ji
,
Y.
,
Zhang
,
S.
,
Wang
,
K.
, and
Qi
,
G.
,
2020
, “
Study on Combustion and Nitrogen Oxide Emissions of Gas Boiler
,”
IOP Conference Series: Materials Science and Engineering
,
Ho Chi Minh City, Vietnam
,
Jan. 6–8
,
IOP Publishing
.
42.
Cho
,
E.-S.
, and
Chung
,
S. H.
,
2009
, “
Improvement of Flame Stability and NO x Reduction in Hydrogen-Added Ultra Lean Premixed Combustion
,”
J. Mech. Sci. Technol.
,
23
(
3
), pp.
650
658
.
43.
Kheirkhah
,
P.
,
Steiche
,
P.
,
Whyte
,
T.
,
Guan
,
M.
, and
Kirchen
,
P.
,
2023
,
On-Road CO2 and NO x Emissions for a Heavy-Duty Truck With Hydrogen-Diesel Co-Combustion
. SAE Technical Paper.
44.
Kim
,
S.
, and
Kim
,
J.
,
2023
, “
Assessing Fuel Economy and NOx Emissions of a Hydrogen Engine Bus Using Neural Network Algorithms for Urban Mass Transit Systems
,”
Energy
,
275
, p.
127517
.
45.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD. Vol. 2
,
DCW industries La Canada
,
CA
.
46.
Modak
,
A. T.
,
1979
, “
Radiation From Products of Combustion
,”
Fire Saf. J.
,
1
(
6
), pp.
339
361
.
47.
Smith
,
T.
,
Shen
,
Z.
, and
Friedman
,
J.
,
1982
,
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
.
48.
Zheng
,
Y. F. J.
,
Ma
,
Y.
,
Sun
,
P.
, and
and Cen
,
K.
,
2000
, “
Computational Modeling of Tangentially Fired Boiler II NOx Emissions
,”
Chin. J. Chem. Eng.
,
8
, pp.
247
250
.
49.
Hanson
,
R. K.
, and
Salimian
,
S.
,
1984
, “
Survey of Rate Constants in the N/H/O System
,”
Combust. Chem.
, pp.
361
421
.
50.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
London, UK
.
51.
Habib
,
M.
,
Elshafei
,
M.
, and
Dajani
,
M.
,
2008
, “
Influence of Combustion Parameters on NOx Production in an Industrial Boiler
,”
Comput. Fluids
,
37
(
1
), pp.
12
23
.
52.
Yaga
,
M.
,
Sasada
,
K.
,
Yamamoto
,
T.
,
Aoki
,
H.
, and
Miura
,
T.
,
2000
, “
An Eddy Characteristic Time Modeling in LES for Gas Turbine Combustor Mitsuru
,”
Proceedings of 2000 International Joint Power Generation Conference
,
Miami Beach, FL
,
July
.
You do not currently have access to this content.