Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

To improve the performance of traditional solar power generation systems, a new solar organic Rankine cycle system that can generate electricity and heat is proposed. The system incorporates the separation-flash process, regenerator, and ejector to enhance its efficiency. The optimization of the working fluid, pinch point temperature difference, evaporator outlet dryness, flash dryness, and entrainment ratio is conducted to achieve optimal performance. Aiming at maximum exergy efficiency and minimum levelized energy cost, the operating parameters are further optimized using a multi-objective optimization algorithm. R245fa is the optimal working fluid for the system, offering maximum net output power and thermal efficiency. The optimal performance can be achieved when the pinch point temperature difference is 1 K, evaporator outlet dryness is 0.6, flash dryness is 0.44, and entrainment ratio is 0.29. Moreover, the photovoltaic subsystem can further increase the net output power and thermal efficiency by 15.52% and 15.45%, achieving a maximum net output power and thermal efficiency of 33.95 kW and 10.61%, respectively. Additionally, when the solar hot water temperature is 100 °C, pinch point temperature difference is 1.8 K, evaporator outlet dryness is 0.6, flash dryness is 0.65, and entrainment ratio is 0.16, the system can achieve the optimal state of both performance and economy, exhibiting optimal exergy efficiency and levelized energy cost of 64.1% and 0.294 $/kWh, respectively. Finally, the payback period of the system is 3.43 years, indicating the potential for significant economic benefits.

References

1.
Liu
,
H.
, and
Han
,
P.
,
2024
, “
Renewable Energy Development and Carbon Emissions: The Role of Electricity Exchange
,”
J. Cleaner Prod.
,
439
(
1
), p.
140807
.
2.
Liu
,
L.
,
Zhai
,
R.
,
Xu
,
Y.
,
Hu
,
Y.
,
Liu
,
S.
, and
Yang
,
L.
,
2024
, “
Comprehensive Sustainability Assessment and Multi-Objective Optimization of a Novel Renewable Energy Driven Multi-Energy Supply System
,”
Appl. Therm. Eng.
,
236
(
5
), p.
121461
.
3.
Li
,
J.
,
Niu
,
H.
,
Meng
,
F.
, and
Li
,
R.
,
2022
, “
Prediction of Short-Term Photovoltaic Power via Self-Attention-Based Deep Learning Approach
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
101301
.
4.
Ren
,
X.
,
Li
,
J.
,
Gao
,
G.
, and
Pei
,
G.
,
2022
, “
An Innovative Concentrated Solar Power System Driven by High-Temperature Cascade Organic Rankine Cycle
,”
J. Energy Storage
,
52
(
15
), p.
104999
.
5.
Cotfas
,
T.
,
Enesca
,
A.
, and
Cotfas
,
A.
,
2024
, “
Enhancing the Performance of the Solar Thermoelectric Generator in Unconcentrated and Concentrated Light
,”
Renewable Energy
,
221
(
2
), p.
119831
.
6.
Hemmati
,
H.
,
Zhang
,
J.
,
Spayde
,
E.
,
Mago
,
J.
, and
Cho
,
H.
,
2021
, “
Performance Analysis of Solar-Powered Organic Rankine Cycle With Energy Storage in Different Climate Zones in the United States
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090908
.
7.
Ahmadi
,
A.
,
Haj
,
A.
, and
Jamali
,
D.
,
2020
, “
Applications of Geothermal Organic Rankine Cycle for Electricity Production
,”
J. Cleaner Prod.
,
274
(
20
), p.
122950
.
8.
Zygmunt
,
K. T.
,
2021
, “
Experimental Research of a Small Biomass Organic Rankine Cycle Plant With Multiple Scroll Expanders Intended for Domestic use
,”
Energy Convers. Manage.
,
244
(
15
), p.
114437
.
9.
Rodge
,
H.
,
Khankari
,
G.
, and
Karmakar
,
S.
,
2022
, “
Waste Heat Recovery From Fly Ash of 210 MW Coal Fired Power Plant Using Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082107
.
10.
Miao
,
Z.
,
Yan
,
P.
,
Xiao
,
M.
, and
Zhang
,
M.
,
2023
, “
Comparative Study on Operating Strategies of the Organic Rankine Cycle Under Transient Heat Source
,”
Energy
,
285
(
15
), p.
128652
.
11.
Zhang
,
S.
,
Liu
,
X.
, and
Liu
,
L.
,
2024
, “
Thermo-Economic Assessment and Multi-Objective Optimization of Organic Rankine Cycle Driven by Solar Energy and Waste Heat
,”
Energy
,
290
(
1
), p.
130223
.
12.
Wang
,
L.
,
Li
,
H.
, and
Bu
,
X.
,
2021
, “
Thermo-Economic Investigation of Binary Flashing Cycle for Enhanced Geothermal System
,”
Geothermics
,
89
(
1
), p.
101951
.
13.
Chowdhury
,
T.
, and
Mokheimer
,
M. A.
,
2021
, “
Energy and Exergy Performance Comparative Analysis of Solar Driven Organic Rankine Cycle Using Different Organic Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102107
.
14.
Escalante
,
E.
,
Balestieri
,
J.
, and
Carvalho
,
J.
,
2022
, “
The Organic Rankine Cycle: A Promising Technology for Electricity Generation and Thermal Pollution Mitigation
,”
Energy
,
247
(
15
), p.
123405
.
15.
Mahmoud
,
M.
,
Alkhedher
,
M.
,
Ramadan
,
M.
,
Naher
,
S.
, and
Pullen
,
K.
,
2022
, “
An Investigation on Organic Rankine Cycle Incorporating a Ground-Cooled Condenser: Working Fluid Selection and Regeneration
,”
Energy
,
249
(
15
), p.
123742
.
16.
Zinsalo
,
M.
,
Lamarche
,
L.
, and
Raymond
,
J.
,
2022
, “
Performance Analysis and Working Fluid Selection of an Organic Rankine Cycle Power Plant Coupled to an Enhanced Geothermal System
,”
Energy
,
245
(
15
), p.
123259
.
17.
Chitgar
,
N.
,
Hemmati
,
A.
, and
Sadrzadeh
,
M.
,
2023
, “
A Comparative Performance Analysis, Working Fluid Selection, and Machine Learning Optimization of ORC Systems Driven by Geothermal Energy
,”
Energy Convers. Manage.
,
286
(
15
), p.
117072
.
18.
Ji
,
J.
,
Zhang
,
J.
,
Jia
,
X.
,
Ji
,
R.
, and
Sheng
,
Z.
,
2022
, “
A Working Fluid Assessment for a Biomass Organic Rankine Cycle Under Different Conditions
,”
Energies
,
15
(
19
), p.
7076
.
19.
Gurgen
,
S.
, and
Altin
,
I.
,
2022
, “
Novel Decision-Making Strategy for Working Fluid Selection in Organic Rankine Cycle: A Case Study for Waste Heat Recovery of a Marine Diesel Engine
,”
Energy
,
252
(
1
), p.
124023
.
20.
Florian
,
H.
, and
Dieter
,
B.
,
2010
, “
Exergy Based Fluid Selection for a Geothermal Organic Rankine Cycle for Combined Heat and Power Generation
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1326
1332
.
21.
Mohan
,
S.
,
Dinesha
,
P.
, and
Campana
,
P.
,
2022
, “
ANN-PSO Aided Selection of Hydrocarbons as Working Fluid for Low-Temperature Organic Rankine Cycle and Thermodynamic Evaluation of Optimal Working Fluid
,”
Energy
,
259
(
15
), p.
124968
.
22.
Ghavami
,
M.
,
Gholizadeh
,
M.
, and
Deymi
,
M.
,
2023
, “
Parametric Study and Optimization Analysis of a Multi-Generation System Using Waste Heat in Natural Gas Refinery—An Energy and Exergoeconomic Analysis
,”
Energy
,
272
(
1
), p.
127157
.
23.
Li
,
T.
,
Zhu
,
J.
, and
Zhang
,
W.
,
2013
, “
Comparative Analysis of Series and Parallel Geothermal Systems Combined Power, Heat and Oil Recovery in Oilfield
,”
Appl. Therm. Eng.
,
50
(
10
), pp.
1132
1141
.
24.
Hasan
,
B.
,
Hasan
,
B.
, and
Gunay
,
A.
,
2020
, “
Organic Rankine Cycle Optimization With Explicit Designs of Evaporator and Radial Inflow Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
072103
.
25.
Joseph
,
O.
,
Mario
,
P.
, and
Giorgio
,
C.
,
2020
, “
Multi-Objective Thermo-Economic Optimization of Biomass Retrofit for an Existing Solar Organic Rankine Cycle Power Plant Based on NSGA-II
,”
Energy Rep.
,
6
(
3
), pp.
136
145
.
26.
Li
,
T.
,
Yuan
,
Z.
,
Li
,
W.
,
Yang
,
J.
, and
Zhu
,
J.
,
2016
, “
Strengthening Mechanisms of Two-Stage Evaporation Strategy on System Performance for Organic Rankine Cycle
,”
Energy
,
101
(
15
), pp.
532
540
.
27.
Li
,
T.
,
Zhu
,
J.
,
Hu
,
K.
,
Kang
,
Z.
, and
Zhang
,
W.
,
2014
, “
Implementation of PDORC (Parallel Double-Evaporator Organic Rankine Cycle) to Enhance Power Output in Oilfield
,”
Energy
,
68
(
15
), pp.
680
687
.
28.
Bellos
,
E.
,
Lykas
,
P.
, and
Tzivanidis
,
C.
,
2022
, “
Investigation of a Solar-Driven Organic Rankine Cycle With Reheating
,”
Appl. Sci.
,
12
(
5
), p.
2322
.
29.
Duarte
,
J.
,
Obregon
,
L.
, and
Valencia
,
G.
,
2021
, “
Comparative Analysis of Intelligence Optimization Algorithms in the Thermo-Economic Performance of an Energy Recovery System Based on Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112101
.
30.
Li
,
P.
,
Qian
,
T.
,
Li
,
J.
,
Lin
,
H.
, and
Wang
,
Y.
,
2023
, “
Thermo-Economic Analysis of a Novel Partial Cascade Organic-Steam Rankine Cycle
,”
Energy Convers. Manage.
,
283
(
1
), p.
116941
.
31.
Singh
,
K.
,
Tiwari
,
K.
, and
Paliwal
,
K.
,
2023
, “
Thermo-Economic Assessment of Hybrid Kalina Cycle and Organic Rankine Cycle System Using a Parabolic Trough Collector Solar Field
,”
Therm. Sci. Eng. Prog.
,
46
(
1
), p.
102132
.
32.
Zhang
,
H.
,
Liu
,
X.
,
Hao
,
R.
,
Ba
,
X.
, and
Liu
,
C.
,
2023
, “
Thermodynamic and Thermoeconomic Analyses of the Energy Segmented Stepped Utilization of Medium- and Low-Temperature Steam Based on a Dual-Stage Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
219
(
25
), p.
119488
.
33.
Baral
,
S.
,
2019
, “
Experimental and Techno-Economic Analysis of Solar-Geothermal Organic Rankine Cycle Technology for Power Generation in Nepal
,”
Int. J. Photoenergy
,
2019
(
8
), pp.
1
15
.
34.
Li
,
T.
,
Zhang
,
Z.
,
Lu
,
J.
,
Yang
,
J.
, and
Hu
,
Y.
,
2015
, “
Two-Stage Evaporation Strategy to Improve System Performance for Organic Rankine Cycle
,”
Appl. Energy
,
150
(
15
), pp.
323
334
.
35.
Li
,
T.
,
Wang
,
Q.
,
Zhu
,
J.
,
Hu
,
K.
, and
Fu
,
W.
,
2015
, “
Thermodynamic Optimization of Organic Rankine Cycle Using Two-Stage Evaporation
,”
Renewable Energy
,
75
(
3
), pp.
654
664
.
36.
Nafey
,
A.
, and
Sharaf
,
M.
,
2010
, “
Combined Solar Organic Rankine Cycle With Reverse Osmosis Desalination Process: Energy, Exergy, and Cost Evaluations
,”
Renewable Energy
,
35
(
11
), pp.
2571
2580
.
37.
Wang
,
Q.
,
Wang
,
J.
, and
Li
,
T.
,
2020
, “
Techno-Economic Performance of Two-Stage Series Evaporation Organic Rankine Cycle With Dual-Level Heat Sources
,”
Appl. Therm. Eng.
,
171
(
5
), p.
115078
.
38.
Meng
,
N.
,
Li
,
T.
, and
Gao
,
X.
,
2022
, “
Thermodynamic and Techno-Economic Performance Comparison of Two-Stage Series Organic Rankine Cycle and Organic Rankine Flash Cycle for Geothermal Power Generation From Hot Dry Rock
,”
Appl. Therm. Eng.
,
200
(
5
), p.
117715
.
39.
Li
,
T.
,
Liu
,
Q.
,
Xu
,
Y.
,
Dong
,
Z.
, and
Meng
,
N.
,
2021
, “
Techno-Economic Performance of Multi-Generation Energy System Driven by Associated Mixture of Oil and Geothermal Water for Oilfield in High Water Cut
,”
Geothermics
,
89
(
1
), p.
101991
.
40.
Zhang
,
X.
,
Cao
,
M.
,
Yang
,
X.
,
Guo
,
H.
, and
Wang
,
J.
,
2019
, “
Economic Analysis of Organic Rankine Cycle Using R123 and R245fa as Working Fluids and a Demonstration Project Report
,”
Appl. Sci.
,
9
(
2
), p.
288
.
41.
Niu
,
J.
,
Wang
,
J.
, and
Liu
,
X.
,
2023
, “
Thermodynamic and Economic Analysis of Organic Rankine Cycle Combined With Flash Cycle and Ejector
,”
Energy
,
282
(
1
), p.
128982
.
42.
Hafiz
,
U.
,
Naveed
,
A.
,
Elfeky
,
K.
, and
Mariam
,
M.
,
2022
, “
Techno-Economic Analysis of a Hybrid District Heating With Borehole Thermal Storage for Various Solar Collectors and Climate Zones in Pakistan
,”
Renewable Energy
,
199
(
11
), pp.
1639
1656
.
43.
Zhang
,
X.
,
Li
,
M.
,
Ge
,
Y.
, and
Li
,
G.
,
2016
, “
Techno-Economic Feasibility Analysis of Solar Photovoltaic Power Generation for Buildings
,”
Appl. Therm. Eng.
,
108
(
5
), pp.
1362
1371
.
44.
Mosaffa
,
A.
,
Garousi
,
F.
,
Infante
,
F.
, and
Rosen
,
M.
,
2016
, “
Exergoeconomic and Environmental Analyses of CO2/NH3 Cascade Refrigeration Systems Equipped With Different Types of Flash Tank Intercoolers
,”
Energy Convers. Manage.
,
117
(
1
), pp.
442
453
.
45.
Eshaghi
,
S.
, and
Hamrang
,
F.
,
2021
, “
An Innovative Techno-Economic Analysis for the Selection of an Integrated Ejector System in the Flare gas Recovery of a Refinery Plant
,”
Energy
,
228
(
1
), p.
120594
.
46.
Mignard
,
D.
,
2014
, “
Correlating the Chemical Engineering Plant Cost Index With Macroeconomic Indicators
,”
Chem. Eng. Res. Des.
,
92
(
2
), pp.
285
294
.
47.
Liu
,
J.
,
Xu
,
Y.
,
Zhang
,
Y.
,
Shuai
,
Y.
, and
Li
,
B.
,
2022
, “
Multi-Objective Optimization of Low Temperature Cooling Water Organic Rankine Cycle Using Dual Pinch Point Temperature Difference Technologies
,”
Energy
,
240
(
1
), p.
122740
.
48.
Liu
,
X.
,
Zhang
,
Y.
, and
Shen
,
J.
,
2017
, “
System Performance Optimization of ORC-Based Geo-Plant With R245fa Under Different Geothermal Water Inlet Temperatures
,”
Geothermics
,
66
(
3
), pp.
134
142
.
49.
Sun
,
J.
,
Liu
,
Q.
, and
Duan
,
Y.
,
2018
, “
Effects of Evaporator Pinch Point Temperature Difference on Thermo-Economic Performance of Geothermal Organic Rankine Cycle Systems
,”
Geothermics
,
75
(
9
), pp.
249
258
.
50.
Li
,
T.
,
Gao
,
H.
, and
Gao
,
X.
,
2022
, “
Synergetic Mechanism of Organic Rankine Flash Cycle With Ejector for Geothermal Power Generation Enhancement
,”
J. Cleaner Prod.
,
375
(
15
), p.
134174
.
51.
Ran
,
P.
,
Ou
,
Y.
,
Zhang
,
C.
, and
Chen
,
Y.
,
2024
, “
Energy, Exergy, Economic, and Life Cycle Environmental Analysis of a Novel Biogas-Fueled Solid Oxide Fuel Cell Hybrid Power Generation System Assisted With Solar Thermal Energy Storage Unit
,”
Appl. Energy
,
358
(
15
), p.
122618
.
52.
Calene
,
T.
, and
Cynthia
,
A.
,
2021
, “
Economic Analysis of Heat Pump Water Heaters Coupled With Air-Based Solar Thermal Collectors in Canada and the United States
,”
J. Build. Eng.
,
35
(
3
), p.
102034
.
You do not currently have access to this content.