Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Precisely forecasting the operational characteristics of oil pipelines is essential for developing rational design, production, and operation strategies, as well as reducing energy consumption and saving energy. Due to significant disparities in the computation outcomes of conventional mechanism models and the inadequate performance of machine learning models when handling limited sample data, their conclusions likewise lack tangible significance. In this study, a novel physics-guided neural network (PGNN) model, which integrates mechanisms with machine learning models, is introduced. The proposed model incorporates essential physical intermediate factors that impact the temperature and pressure of oil pipelines as artificial neurons within the loss function. Additionally, an adaptive moment estimate approach is employed to optimize the parameters of the model. Through a comparative analysis of various models' predictive capabilities on an oil pipeline, it was shown that PGNN has the highest level of accuracy in forecasting pipeline temperature and pressure. Furthermore, PGNN demonstrates the ability to generate satisfactory prediction outcomes even with a limited sample size. Simultaneously, the predictive outcomes of PGNN exhibit a stronger correlation with variables that have a direct impact on temperature and pressure.

References

1.
Chen
,
C.
,
Li
,
C.
,
Reniers
,
G.
, and
Yang
,
F.
,
2021
, “
Safety and Security of Oil and Gas Pipeline Transportation: A Systematic Analysis of Research Trends and Future Needs Using WoS
,”
J. Clean. Prod.
,
279
, p.
123583
.
2.
Wang
,
Z.
,
Wang
,
H.
,
Zhu
,
C.
,
Rui
,
Z.
, and
Liu
,
Y.
,
2020
, “
A Novel Method for Characterizing the Aggregation of Wax Crystals and an Improvement in Wax Deposition Modeling
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103003
.
3.
Liu
,
D.
,
Liu
,
Y.
,
Lai
,
N.
,
Ji
,
Y.
, and
Hu
,
T.
,
2022
, “
A New Method for Calculating the Inflection Point Temperature of Heavy-Oil Rheology Transforming From Non-Newton Fluid Into the Newton Fluid
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
083001
.
4.
Gong
,
J.
,
Kang
,
Q.
,
Wu
,
H.
,
Li
,
X.
,
Shi
,
B.
, and
Song
,
S.
,
2023
, “
Application and Prospects of Multi-phase Pipeline Simulation Technology in Empowering the Intelligent Oil and Gas Fields
,”
J. Pipeline Sci. Eng.
,
3
(
3
), p.
100127
.
5.
Xu
,
L.
,
Hou
,
L.
,
Zhu
,
Z.
,
Li
,
Y.
,
Liu
,
J.
,
Lei
,
T.
, and
Wu
,
X.
,
2021
, “
Mid-Term Prediction of Electrical Energy Consumption for Crude Oil Pipelines Using a Hybrid Algorithm of Support Vector Machine and Genetic Algorithm
,”
Energy
,
222
, p.
119955
.
6.
Duan
,
J.
,
Wang
,
W.
,
Zhang
,
Y.
,
Liu
,
H.
,
Lin
,
B.
, and
Gong
,
J.
,
2012
, “
Calculation on Inner Wall Temperature in Oil-Gas Pipe Flow
,”
J. Cent. South Univ.
,
19
(
7
), pp.
1932
1937
.
7.
Zhou
,
M.
,
Zhang
,
Y.
, and
Jin
,
S.
,
2015
, “
Dynamic Optimization of Heated Oil Pipeline Operation Using PSO–DE Algorithm
,”
Measurement
,
59
, pp.
344
351
.
8.
Vandrangi
,
S. K.
,
Lemma
,
T. A.
,
Mujtaba
,
S. M.
, and
Pedapati
,
S. R.
,
2021
, “
Determination and Analysis of Leak Estimation Parameters in Two-Phase Flow Pipelines Using OLGA Multiphase Software
,”
Sustain. Comput.: Inform. Syst.
,
31
, p.
100564
.
9.
Yi
,
X.
,
Liping
,
Z.
, and
Tingting
,
Z.
,
2014
, “
Research of Emergency Venting Time in Natural Gas Pipeline Accidents With SPS
,”
Procedia Eng.
,
84
, pp.
927
932
.
10.
Longzhu
,
G.
,
Hao
,
C.
, and
Tengli
,
Z.
,
2012
, “
Predicting the Formation of Gas Hydrate by PIPESIM
,”
2012 Fourth International Conference on Computational and Information Sciences
,
Chongqing, China
,
Aug. 17–19
, pp.
1167
1170
.
11.
Mannering
,
F.
,
Bhat
,
C. R.
,
Shankar
,
V.
, and
Abdel-Aty
,
M.
,
2020
, “
Big Data, Traditional Data and the Tradeoffs Between Prediction and Causality in Highway-Safety Analysis
,”
Anal. Methods Accid. Res.
,
25
, p.
100113
.
12.
Panwar
,
B.
,
Dhuriya
,
G.
,
Johri
,
P.
,
Singh Yadav
,
S.
, and
Gaur
,
N.
,
2021
, “
Stock Market Prediction Using Linear Regression and SVM
,”
2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE)
,
Greater Noida, India
,
Mar. 4–5
, pp.
629
631
.
13.
Alabdulrazzaq
,
H.
,
Alenezi
,
M. N.
,
Rawajfih
,
Y.
,
Alghannam
,
B. A.
,
Al-Hassan
,
A. A.
, and
Al-Anzi
,
F. S.
,
2021
, “
On the Accuracy of ARIMA Based Prediction of COVID-19 Spread
,”
Results Phys.
,
27
, p.
104509
.
14.
Muñoz
,
J.
, and
Felicísimo
,
Á. M.
,
2004
, “
Comparison of Statistical Methods Commonly Used in Predictive Modelling
,”
J. Veg. Sci.
,
15
(
2
), pp.
285
292
.
15.
Jiang
,
P.
,
Liu
,
Z.
,
Niu
,
X.
, and
Zhang
,
L.
,
2021
, “
A Combined Forecasting System Based on Statistical Method, Artificial Neural Networks, and Deep Learning Methods for Short-Term Wind Speed Forecasting
,”
Energy
,
217
, p.
119361
.
16.
Yarveicy
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2018
, “
Determination of the Gas Hydrate Formation Limits to Isenthalpic Joule–Thomson Expansions
,”
Chem. Eng. Res. Des.
,
132
, pp.
208
214
.
17.
Yarveicy
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2018
, “
Performance Evaluation of the Machine Learning Approaches in Modeling of CO2 Equilibrium Absorption in Piperazine Aqueous Solution
,”
J. Mol. Liq.
,
255
, pp.
375
383
.
18.
Yarveicy
,
H.
, and
Ghiasi
,
M. M.
,
2017
, “
Modeling of Gas Hydrate Phase Equilibria: Extremely Randomized Trees and LSSVM Approaches
,”
J. Mol. Liq.
,
243
, pp.
533
541
.
19.
Sun
,
Y.
,
Ma
,
L.
, and
Morris
,
J.
,
2009
, “
A Practical Approach for Reliability Prediction of Pipeline Systems
,”
Eur. J. Oper. Res.
,
198
(
1
), pp.
210
214
.
20.
Su
,
H.
,
Zio
,
E.
,
Zhang
,
J.
,
Yang
,
Z.
,
Li
,
X.
, and
Zhang
,
Z.
,
2018
, “
A Systematic Hybrid Method for Real-Time Prediction of System Conditions in Natural Gas Pipeline Networks
,”
J. Nat. Gas Sci. Eng.
,
57
, pp.
31
44
.
21.
Peng
,
S.
,
Zhang
,
Z.
,
Liu
,
E.
,
Liu
,
W.
, and
Qiao
,
W.
,
2021
, “
A New Hybrid Algorithm Model for Prediction of Internal Corrosion Rate of Multiphase Pipeline
,”
J. Nat. Gas Sci. Eng.
,
85
, p.
103716
.
22.
Shadloo
,
M. S.
,
Rahmat
,
A.
,
Karimipour
,
A.
, and
Wongwises
,
S.
,
2020
, “
Estimation of Pressure Drop of Two-Phase Flow in Horizontal Long Pipes Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p. 112110.
23.
Zhang
,
Y.
,
Wang
,
B.
, and
Huang
,
X.
,
2020
, “
Online Optimization of Heated-Oil Pipeline Operation Based on Neural Network System Identification
,”
J. Pipeline Syst. Eng. Pract
,
11
(
1
), p.
04019040
.
24.
Li
,
G.
,
Sheng
,
Y.
,
Jin
,
H.
,
Ma
,
W.
,
Qi
,
J.
,
Wen
,
Z.
,
Zhang
,
B.
,
Mu
,
Y.
, and
Bi
,
G.
,
2010
, “
Forecasting the Oil Temperatures Along the Proposed China–Russia Crude Oil Pipeline Using Quasi 3-D Transient Heat Conduction Model
,”
Cold Reg. Sci. Technol.
,
64
(
3
), pp.
235
242
.
25.
Wei
,
L.
,
Zhang
,
Y.
,
Ji
,
L.
,
Ye
,
L.
,
Zhu
,
X.
, and
Fu
,
J.
,
2022
, “
Pressure Drop Prediction of Crude Oil Pipeline Based on PSO-BP Neural Network
,”
Energies
,
15
(
16
), p.
5880
.
26.
Zhang
,
F.
,
Zhang
,
Y.
,
Li
,
J.
,
Zhu
,
H.
,
Zhang
,
J.
, and
Qi
,
Y.
,
2023
, “
Pressure Drop Prediction Model of the Gas-Liquid Stratified Flow Development Section in the Horizontal Pipeline
,”
ASME J. Energy Resour. Technol.
,
145
(
11
), p.
113101
.
27.
Jin
,
X.-B.
,
Robert Jeremiah
,
R. J.
,
Su
,
T.-L.
,
Bai
,
Y.-T.
, and
Kong
,
J.-L.
,
2021
, “
The New Trend of State Estimation: From Model-Driven to Hybrid-Driven Methods
,”
Sensors
,
21
(
6
), p.
2085
.
28.
Zheng
,
J.
,
Du
,
J.
,
Liang
,
Y.
,
Wang
,
C.
,
Liao
,
Q.
, and
Zhang
,
H.
,
2021
, “
Deeppipe: Theory-Guided LSTM Method for Monitoring Pressure After Multi-product Pipeline Shutdown
,”
Process Saf. Environ. Prot.
,
155
, pp.
518
531
.
29.
Zhang
,
X.
,
Hou
,
L.
,
Zhu
,
Z.
,
Yang
,
M.
,
Hu
,
Z.
, and
Liu
,
J.
,
2024
, “
Prediction of Liquid Holdup and Pressure Drop in Gas-Liquid Two-Phase Flow Based on Integrating Mechanism Analysis and Data Mining
,”
Geoenergy Sci. Eng.
,
239
, p.
212971
.
30.
Zhang
,
X.
,
Hou
,
L.
,
Liu
,
J.
,
Yang
,
K.
,
Chai
,
C.
,
Li
,
Y.
, and
He
,
S.
,
2022
, “
Energy Consumption Prediction for Crude Oil Pipelines Based on Integrating Mechanism Analysis and Data Mining
,”
Energy
,
254
, p.
124382
.
31.
Yuan
,
Z.
,
Chen
,
L.
,
Shao
,
W.
,
Zuo
,
Z.
,
Zhang
,
W.
, and
Liu
,
G.
,
2021
, “
A Robust Hybrid Predictive Model of Mixed Oil Length With Deep Integration of Mechanism and Data
,”
J. Pipe. Sci. Eng.
,
1
(
4
), pp.
459
467
.
32.
Yan
,
L.
,
Zhang
,
H.
,
Zhang
,
D.
,
Shang
,
Z.
,
Xu
,
H.
, and
Qiang
,
G.
,
2024
, “
Separate-Layer Injection Scheme Optimization Based on Integrated Injection Information With Artificial Neural Network and Residual Network
,”
ASME J. Energy Resour. Technol.
, pp.
1
31
.
33.
Pazikadin
,
A. R.
,
Rifai
,
D.
,
Ali
,
K.
,
Malik
,
M. Z.
,
Abdalla
,
A. N.
, and
Faraj
,
M. A.
,
2020
, “
Solar Irradiance Measurement Instrumentation and Power Solar Generation Forecasting Based on Artificial Neural Networks (ANN): A Review of Five Years Research Trend
,”
Sci. Total Environ.
,
715
, p.
136848
.
34.
Abdolrasol
,
M. G. M.
,
Hussain
,
S. M. S.
,
Ustun
,
T. S.
,
Sarker
,
M. R.
,
Hannan
,
M. A.
,
Mohamed
,
R.
,
Ali
,
J. A.
,
Mekhilef
,
S.
, and
Milad
,
A.
,
2021
, “
Artificial Neural Networks Based Optimization Techniques: A Review
,”
Electronics
,
10
(
21
), p.
2689
.
35.
Sleiti
,
A. K.
,
Al-Ammari
,
W. A.
,
Vesely
,
L.
, and
Kapat
,
J. S.
,
2022
, “
Carbon Dioxide Transport Pipeline Systems: Overview of Technical Characteristics, Safety, Integrity and Cost, and Potential Application of Digital Twin
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
092106
.
36.
Rengasamy
,
D.
,
Jafari
,
M.
,
Rothwell
,
B.
,
Chen
,
X.
, and
Figueredo
,
G. P.
,
2020
, “
Deep Learning With Dynamically Weighted Loss Function for Sensor-Based Prognostics and Health Management
,”
Sensors
,
20
(
3
), p.
723
.
37.
Kingma
,
D. P.
, and
Ba
,
J.
,
2017
, ADAM: A Method for Stochastic Optimization.
38.
Agrawal
,
R.
,
Malik
,
A.
,
Samuel
,
R.
, and
Saxena
,
A.
,
2021
, “
Real-Time Prediction of Litho-Facies From Drilling Data Using an Artificial Neural Network: A Comparative Field Data Study With Optimizing Algorithms
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
043003
.
39.
Halidou
,
A.
,
Mohamadou
,
Y.
,
Ari
,
A. A. A.
, and
Zacko
,
E. J. G.
,
2023
, “
Review of Wavelet Denoising Algorithms
,”
Multim. Tools Appl.
,
82
(
27
), pp.
41539
41569
.
40.
Mahmud
,
M. S.
,
Huang
,
J. Z.
,
Salloum
,
S.
,
Emara
,
T. Z.
, and
Sadatdiynov
,
K.
,
2020
, “
A Survey of Data Partitioning and Sampling Methods to Support Big Data Analysis
,”
Big Data Min. Anal.
,
3
(
2
), pp.
85
101
.
41.
Sola
,
J.
, and
Sevilla
,
J.
,
1997
, “
Importance of Input Data Normalization for the Application of Neural Networks to Complex Industrial Problems
,”
IEEE Trans. Nucl. Sci.
,
44
(
3
), pp.
1464
1468
.
You do not currently have access to this content.