Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Bio-oxygenated fuels are expected to be used as a clean alternative energy source to improve the ignition behavior and pollutant emissions of RP-3 kerosene in compression ignition engines. In this study, the spray autoignition of PR-3 blended with different types of oxygenated fuels (including n-pentanol (PeOH), methyl propionate (MP), methyl ethyl ketone (MEK), 1,2-dimethoxyethane (1,2-DME), and 2-ethylhexyl nitrate (EHN)) was measured using a constant volume combustion chamber. Experiments were performed on three sets of blended fuels with different oxygen contents (2.5 wt%, 5 wt%, and 10 wt%) in the temperature range of 723–863 K and at ambient pressures of 2.2 and 4 MPa. A kinetic analysis utilized a merged RP-3 low-temperature kinetic model containing various oxygenated components. The ignition delay of blended fuels increases with the addition of PeOH, MP, and MEK, particularly PeOH, which demands more energy absorption at low temperatures due to its higher specific heat and latent heat of vaporization. As ambient pressure increased, the ignition delay period shortened for all blended fuels; however, PeOH and MEK demonstrated more significant low-temperature suppression. The combined kinetic model can reasonably predict the trend of the effect of oxygenated additives. 1,2-DME showed significantly more low-temperature reactivity versus PeOH, MP, and MEK. The variability is because the products of secondary O2 addition and isomerization of 1,2-DME undergo low-temperature branched chain reactions, but other oxygenated fuels produce more inert components.

References

1.
Feser
,
J.
, and
Gupta
,
A.
,
2021
, “
Performance and Emissions of Drop-in Aviation Biofuels in a Lab-Scale Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042103
.
2.
Li
,
S.
,
Ge
,
Y.
,
Wei
,
X.
, and
Li
,
T.
,
2016
, “
Mixing and Combustion Modeling of Hydrogen Peroxide/Kerosene Shear-Coaxial Jet Flame in Lab-Scale Rocket Engine
,”
Aerosp. Sci. Technol.
,
56
, pp.
148
154
.
3.
Liu
,
R.
,
Huang
,
K.
,
Qiao
,
Y.
,
Wang
,
Z.
, and
Ji
,
H.
,
2022
, “
Combustion Performance Investigation of Aviation Kerosene (RP-3) on a Compression Ignition Diesel Engine Under Various Loads
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032308
.
4.
Wang
,
J.
,
Zhang
,
Q.
,
Zhang
,
Y.
,
Yu
,
L.
,
Zhou
,
D.
,
Lu
,
X.
, and
Qian
,
Y.
,
2024
, “
Comparative Study of Ignition Characteristics and Engine Performance of RP-3 Kerosene and Diesel Under Compression Ignition Condition
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
238
(
5
), pp.
999
1013
.
5.
Lou
,
D.
,
Tang
,
Y.
,
Wang
,
C.
,
Fang
,
L.
, and
Zhang
,
Y.
,
2022
, “
Study of Diesel Spray Impinging Ignition and Combustion Characteristics Under Variable Ambient Densities Based on the Visualization Experiment
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102303
.
6.
Guan
,
Y.
,
Liu
,
W.
, and
Han
,
D.
,
2021
, “
Comparative Study on Spray Auto-Ignition of di-n-Butyl Ether and Diesel Blends at Engine-Like Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042302
.
7.
Wang
,
Z.
,
Li
,
X.
,
Xiang
,
L.
,
Huang
,
Y.
,
Lang
,
B.
,
Cheng
,
X.
, and
Zhang
,
J.
,
2023
, “
Potential of Kerosene-Diesel Blends as Alternative Fuels for Diesel Engines: Perspectives From Spray Combustion Characteristics
,”
Fuel
,
335
, p.
127112
.
8.
Liu
,
F.
,
Zhou
,
L.
,
Zhang
,
Y.
,
Liu
,
C.
, and
Wei
,
H.
,
2023
, “
Effects of Orifice Diameter of Pre-Chamber Jet Ignition on the Combustion Characteristics and Pressure Oscillations in a Kerosene-Fueled Engine
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
032302
.
9.
Jing
,
W.
,
Roberts W
,
L.
, and
Fang
,
T.
,
2015
, “
Spray Combustion of Jet-A and Diesel Fuels in a Constant Volume Combustion Chamber
,”
Energy Convers. Manage.
,
89
, pp.
525
540
.
10.
Pratap Singh
,
A.
, and
Agarwal
,
A. K.
,
2016
, “
Diesoline, Diesohol, and Diesosene Fuelled HCCI Engine Development
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052212
.
11.
Du
,
L. J.
,
Liu
,
Y. X.
, and
Tian
,
Z. Y.
,
2021
, “
An Experimental and Modeling Study of Oxidation of Real RP-3 Aviation Kerosene
,”
Fuel
,
305
, p.
121476
.
12.
Mao
,
Y.
,
Yu
,
L.
,
Wu
,
Z.
,
Tao
,
W.
,
Wang
,
S.
,
Ruan
,
C.
,
Zhu
,
L.
, and
Lu
,
X.
,
2019
, “
Experimental and Kinetic Modeling Study of Ignition Characteristics of RP-3 Kerosene Over Low-to-High Temperature Ranges in a Heated Rapid Compression Machine and a Heated Shock Tube
,”
Combust. Flame
,
203
, pp.
157
169
.
13.
Zeng
,
M.
,
Deng
,
Y.
,
Xiong
,
Z.
,
Guo
,
J.
,
Zhou
,
Z.
,
Yang
,
J.
,
Yuan
,
W.
, and
Qi
,
F.
,
2023
, “
Probing the Low Temperature Oxidation Chemistry of RP-3 Kerosene: Experimental and Kinetic Modeling Investigation
,”
Combust. Flame
,
251
, p.
112709
.
14.
Kang
,
D.
,
Kalaskar
,
V.
,
Kim
,
D.
,
Martz
,
J.
,
Violi
,
A.
, and
Boehman
,
A.
,
2016
, “
Experimental Study of Autoignition Characteristics of Jet-A Surrogates and Their Validation in a Motored Engine and a Constant-Volume Combustion Chamber
,”
Fuel
,
184
, pp.
565
580
.
15.
Duan
,
Y.
,
Liu
,
W.
,
Huang
,
Z.
, and
Han
,
D.
,
2021
, “
An Experimental Study on Spray Auto-Ignition of RP-3 Jet Fuel and Its Surrogates
,”
Front. Energy
,
15
(
2
), pp.
396
404
.
16.
Wang
,
M.
,
Dewil
,
R.
,
Maniatis
,
K.
,
Wheeldon
,
J.
,
Tan
,
T.
,
Baeyens
,
J.
, and
Fang
,
Y.
,
2019
, “
Biomass-Derived Aviation Fuels: Challenges and Perspective
,”
Prog. Energy Combust. Sci.
,
74
, pp.
31
49
.
17.
Yang
,
B.
,
Sun
,
W.
,
Moshammer
,
K.
, and
Hansen
,
N.
,
2021
, “
Review of the Influence of Oxygenated Additives on the Combustion Chemistry of Hydrocarbons
,”
Energy Fuels
,
35
(
17
), pp.
13550
13568
.
18.
Anastopoulos
,
G.
,
Lois
,
E.
,
Zannikos
,
F.
,
Kalligeros
,
S.
, and
Teas
,
C.
,
2002
, “
HFRR Lubricity Response of an Additized Aviation Kerosene for Use in CI Engines
,”
Tribol. Int.
,
35
(
9
), p.
599
604
.
19.
Suchocki
,
T.
,
Kazimierski
,
P.
,
Lampart
,
P.
,
Januszewicz
,
K.
,
Białecki
,
T.
,
Gawron
,
B.
, and
Janicka
,
A.
,
2023
, “
A Comparative Study of Pentanol (C5 Alcohol) and Kerosene Blends in Terms of gas Turbine Engine Performance and Exhaust Gas Emission
,”
Fuel
,
334
, p.
126741
.
20.
Chen
,
L.
,
Ding
,
S.
,
Liu
,
H.
,
Lu
,
Y.
,
Li
,
Y.
, and
Roskilly
,
A. P.
,
2017
, “
Comparative Study of Combustion and Emissions of Kerosene (RP-3), Kerosene-Pentanol Blends and Diesel in a Compression Ignition Engine
,”
Appl. Energy
,
203
, pp.
91
100
.
21.
Wei
,
S.
,
Sun
,
L.
,
Wu
,
L.
,
Yu
,
Z.
, and
Zhang
,
Z.
,
2022
, “
Study of Combustion Characteristics of Diesel, Kerosene (RP-3) and Kerosene-Ethanol Blends in a Compression Ignition Engine
,”
Fuel
,
317
, p.
123468
.
22.
Wu
,
Z.
,
Mao
,
Y.
,
Raza
,
M.
,
Zhu
,
J.
,
Feng
,
Y.
,
Wang
,
S.
,
Qian
,
Y.
,
Yu
,
L.
, and
Lu
,
X.
,
2019
, “
Surrogate Fuels for RP-3 Kerosene Formulated by Emulating Molecular Structures, Functional Groups, Physical and Chemical Properties
,”
Combust. Flame
,
208
, pp.
388
401
.
23.
Pan
,
M.
,
Huang
,
R.
,
Liao
,
J.
,
Jia
,
C.
,
Zhou
,
X.
,
Huang
,
H.
, and
Huang
,
X.
,
2019
, “
Experimental Study of the Spray, Combustion, and Emission Performance of a Diesel Engine With High n-Pentanol Blending Ratios
,”
Energy Convers. Manage.
,
194
, pp.
1
10
.
24.
Diévart
,
P.
,
Won S
,
H.
,
Gong
,
J.
,
Dooley
,
S.
, and
Ju
,
Y.
,
2013
, “
A Comparative Study of the Chemical Kinetic Characteristics of Small Methyl Esters in Diffusion Flame Extinction
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
821
829
.
25.
Padhi
,
U. P.
,
Agarwal
,
A. A.
, and
Kumar
,
S.
,
2023
, “
Effect of 2-Butanone Addition on Laminar Burning Velocity of Gasoline XP95 at Higher Mixture Temperatures
,”
Combust. Flame
,
255
, p.
112924
.
26.
Sun
,
W.
,
Lailliau
,
M.
,
Serinyel
,
Z.
,
Dayma
,
G.
,
Moshammer
,
K.
,
Hansen
,
N.
,
Yang
,
B.
, and
Dagaut
,
P.
,
2019
, “
Insights Into the Oxidation Kinetics of a Cetane Improver–1, 2-Dimethoxyethane (1, 2-DME) With Experimental and Modeling Methods
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
555
564
.
27.
Simsek
,
S.
, and
Uslu
,
S.
,
2020
, “
Investigation of the Effects of Biodiesel/2-Ethylhexyl Nitrate (EHN) Fuel Blends on Diesel Engine Performance and Emissions by Response Surface Methodology (RSM)
,”
Fuel
,
275
, p.
118005
.
28.
Liu
,
H.
,
Zhang
,
X.
,
Zhang
,
Z.
,
Wu
,
Y.
,
Wang
,
C.
,
Chang
,
W.
,
Zheng
,
Z.
, and
Yao
,
M.
,
2023
, “
Effects of 2-Ethylhexyl Nitrate (EHN) on Combustion and Emissions on a Compression Ignition Engine Fueling High-Pressure Direct-Injection Pure Methanol Fuel
,”
Fuel
,
341
, p.
127684
.
29.
Conesa
,
A.
,
Shen
,
S.
, and
Coronas
,
A.
,
1998
, “
Liquid Densities, Kinematic Viscosities, and Heat Capacities of Some Ethylene Glycol Dimethyl Ethers at Temperatures From 283.15 to 423.15 K
,”
Int. J. Thermophys.
,
19
(
5
), pp.
1343
1358
.
30.
Mariano
,
A.
,
Canzonieri
,
S.
,
Camacho
,
A.
,
Mainar
,
A.
, and
Postigo
,
M.
,
2011
, “
Viscometric and Volumetric Properties of Benzene + Methyl Acetate, or + Methyl Propanoate, or + Methyl Butanoate Binary Systems at 283.15, 298.15 and 313.15 K
,”
Phys. Chem. Liq.
,
49
(
6
), pp.
720
728
.
31.
Habibullah
,
M.
,
Rahman
,
I. M. M.
,
Uddin
,
M. A.
,
Iwakabe
,
K.
,
Azam
,
A.
, and
Hasegawa
,
H.
,
2011
, “
Densities and Viscosities of the Binary Mixtures of Phenylmethanol With 2-Butanone
,”
J. Chem. Eng. Data
,
56
(
8
), pp.
3323
3327
.
32.
Yu
,
Z.
,
Wei
,
S.
,
Wu
,
C.
,
Sun
,
L.
, and
Zhang
,
Z.
,
2022
, “
Development and Verification of RP-3 Aviation Kerosene Surrogate Fuel Models Using a Genetic Algorithm
,”
Fuel
,
312
, p.
122853
.
33.
Mueller
,
C. J.
,
Boehman
,
A. L.
, and
Martin
,
G. C.
,
2009
, “
An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine With Soy Biodiesel
,”
SAE Int. J. Fuels Lubr.
,
2
(
1
), pp.
789
816
.
34.
Dobbelaere
,
M. R.
,
Ureel
,
Y.
,
Vermeire
,
F. H.
,
Tomme
,
L.
,
Stevens
,
C. V.
, and
Van Geem
,
K. M.
,
2022
, “
Machine Learning for Physicochemical Property Prediction of Complex Hydrocarbon Mixtures
,”
Ind. Eng. Chem. Res.
,
61
(
24
), pp.
8581
8594
.
35.
Kim
,
D.
,
Martz
,
J.
, and
Violi
,
A.
,
2014
, “
A Surrogate for Emulating the Physical and Chemical Properties of Conventional Jet Fuel
,”
Combust. Flame
,
161
(
6
), pp.
1489
1498
.
36.
Grunberg
,
L.
, and
Nissan A
,
H.
,
1949
, “
Mixture Law for Viscosity
,”
Nature
,
164
(
4175
), pp.
799
800
.
37.
Doble
,
M.
,
2007
,
Perry's Chemical Engineers’ Handbook
,
McGraw-Hil
,
New York
.
38.
Zhang
,
Q.
,
Han
,
Y.
,
Zhang
,
K.
,
Xu
,
L.
,
Sun
,
X.
, and
Jia
,
D.
,
2024
, “
Experimental Study of the Effect of Structural Differences in the Composition of Kerosene-Like Blended Fuels on Low-Temperature Autoignition in a Constant Volume Combustion Chamber
,”
J. Energy Inst.
,
112
, p.
101451
.
39.
ASTM International
,
2021
, “
Standard Test Method for Determination of Derived Cetane Number (DCN) of Diesel Fuel Oils Ignition Delay and Combustion Delay Using a Constant Volume Combustion Chamber Method
,
ASTM International
,
West Conshohocken, PA
, Technical Report ASTM D7668.
40.
Zhou
,
C. W.
,
Yang
,
L.
,
Burke
,
U.
,
Banyon
,
C.
,
Somers
,
K. P.
,
Shuiting
,
D.
,
Khan
,
S.
, et al
,
2018
, “
An Experimental and Chemical Kinetic Modeling Study of 1, 3-Butadiene Combustion: Ignition Delay Time and Laminar Flame Speed Measurements
,”
Combust. Flame
,
197
, pp.
423
438
.
41.
Mao
,
Y.
,
Raza
,
M.
,
Wu
,
Z.
,
Zhu
,
J.
,
Yu
,
L.
,
Wang
,
S.
,
Zhu
,
L.
, and
Lu
,
X.
,
2020
, “
An Experimental Study of n-Dodecane and the Development of an Improved Kinetic Model
,”
Combust. Flame
,
212
, pp.
388
402
.
42.
Yu
,
L.
,
Qiu
,
Y.
,
Mao
,
Y.
,
Wang
,
S.
,
Ruan
,
C.
,
Tao
,
W.
,
Qian
,
Y.
, and
Lu
,
X.
,
2019
, “
A Study on the Low-to-Intermediate Temperature Ignition Delays of Long Chain Branched Paraffin: Iso-Cetane
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
631
638
.
43.
Yuan
,
W.
,
Li
,
Y.
,
Dagaut
,
P.
,
Yang
,
J.
, and
Qi
,
F.
,
2015
, “
Investigation on the Pyrolysis and Oxidation of Toluene Over a Wide Range Conditions. II. A Comprehensive Kinetic Modeling Study
,”
Combust. Flame
,
162
(
1
), pp.
22
40
.
44.
Chatterjee
,
T.
,
Saggese
,
C.
,
Dong
,
S.
,
Patel
,
V.
,
Lockwood
,
K. S.
,
Curran
,
H. J.
,
Labbe
,
N. J.
,
Wagnon
,
S. W.
, and
Pitz
,
W. J.
,
2023
, “
Experimental and Kinetic Modeling Study of the Low-Temperature and High-Pressure Combustion Chemistry of Straight Chain Pentanol Isomers: 1-,2-and 3-Pentanol
,”
Proc. Combust. Inst.
,
39
(
1
), pp.
265
274
.
45.
Felsmann
,
D.
,
Zhao
,
H.
,
Wang
,
Q.
,
Graf
,
I.
,
Tan
,
T.
,
Yang
,
X.
,
Carter
,
E. A.
,
Ju
,
Y.
, and
Kohse-Höinghaus
,
K.
,
2017
, “
Contributions to Improving Small Ester Combustion Chemistry: Theory, Model and Experiments
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
543
551
.
46.
Hemken
,
C.
,
Burke
,
U.
,
Lam
,
K. Y.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Heufer
,
K. A.
, and
Kohse-Höinghaus
,
K.
,
2017
, “
Toward a Better Understanding of 2-Butanone Oxidation: Detailed Species Measurements and Kinetic Modeling
,”
Combust. Flame
,
184
, pp.
195
207
.
47.
ANSYS Reaction Design: Chemkin Pro 19.2, San Diego, 2019
48.
Groendyk
,
M. A.
, and
Rothamer
,
D.
,
2015
, “
Effects of Fuel Physical Properties on Auto-Ignition Characteristics in a Heavy Duty Compression Ignition Engine
,”
SAE Int. J. Fuels Lubr.
,
8
(
1
), pp.
200
213
.
49.
Naber
,
J. D.
, and
Siebers
,
D. L.
,
1996
, “
Effects of gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,”
SAE Trans.
,
105
(
3
), pp.
82
111
.
50.
Lefebvre
,
A. H.
, and
McDonell
,
V. G.
,
2017
,
Atomization and Sprays
,
CRC Press
,
Boca Raton, FL
.
51.
Ejim
,
C. E.
,
Fleck
,
B. A.
, and
Amirfazli
,
A.
,
2007
, “
Analytical Study for Atomization of Biodiesels and Their Blends in a Typical Injector: Surface Tension and Viscosity Effects
,”
Fuel
,
86
(
10–11
), pp.
1534
1544
.
52.
Kim
,
D.
,
Martz
,
J.
, and
Violi
,
A.
,
2016
, “
Effects of Fuel Physical Properties on Direct Injection Spray and Ignition Behavior
,”
Fuel
,
180
, pp.
481
496
.
53.
Jeon
,
J.
, and
Moon
,
S.
,
2018
, “
Ambient Density Effects on Initial Flow Breakup and Droplet Size Distribution of Hollow-Cone Sprays From Outwardly-Opening GDI Injector
,”
Fuel
,
211
, pp.
572
581
.
54.
Heufer
,
K. A.
,
Sarathy
,
S. M.
,
Curran
,
H. J.
,
Davis
,
A. C.
,
Westbrook
,
C. K.
, and
Pitz
,
W. J.
,
2012
, “
Detailed Kinetic Modeling Study of n-Pentanol Oxidation
,”
Energy Fuels
,
26
(
11
), pp.
6678
6685
.
55.
Mahmoud
,
M. A. M.
,
Shiroudi
,
A.
,
Abdel-Rahman
,
M. A.
,
Shibl
,
M. F.
,
Abdel-Azeim
,
S.
, and
El-Nahas
,
A. M.
,
2021
, “
Structures, Energetics, and Kinetics of H-Atom Abstraction From Methyl Propionate by Molecular Oxygen: Ab Initio and DFT Investigations
,”
Comput. Theor. Chem.
,
1196
, p.
113119
.
56.
Thion
,
S.
,
Diévart
,
P.
,
Van Cauwenberghe
,
P.
,
Dayma
,
G.
,
Serinyel
,
Z.
, and
Dagaut
,
P.
,
2017
, “
An Experimental Study in a Jet-Stirred Reactor and a Comprehensive Kinetic Mechanism for the Oxidation of Methyl Ethyl Ketone
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
459
467
.
57.
Sun
,
W.
,
Tao
,
T.
,
Zhang
,
R.
,
Li
,
W.
,
Yang
,
J.
, and
Yang
,
B.
,
2018
, “
Elucidating the Flame Chemistry of Monoglyme via Experimental and Modeling Approaches
,”
Combust. Flame
,
191
, pp.
298
308
.
You do not currently have access to this content.