Using conduits in which a transmitted shock wave experiences abrupt changes in its direction of propagation is an effective means for shock wave attenuation. An additional attenuation of the transmitted shock wave is obtained when the medium contained inside the conduit (through which the shock wave is transmitted) is a suspension rather than a pure gas. The present numerical study shows that adding small solid particles (dust) into the gaseous phase results in sharp attenuation of all shock waves passing through the conduit. It is shown that the smaller the dust particles diameter is, the higher the shock attenuation becomes. Increasing the dust mass loading in the suspension also causes a quick attenuation. By proper choice of dust mass loading in the suspension, or the particles diameter, it is possible to ensure that the emerging wave from the conduit exit channel is a (smooth) compression wave, rather than a shock wave.

1.
Igra
,
O.
,
Wu
,
X.
,
Falcovitz
,
J.
,
Meguro
,
T.
,
Takayama
,
K.
, and
Heilig
,
W.
,
2001
, “
Experimental and Theoretical Study of Shock Wave Propagation Through Ducts With Abrupt Changes in the Flow Direction
,”
J. Fluid Mech.
,
437
, pp.
255
282
.
2.
Falcovitz, J., and Igra, O., 2000, “Shock Wave Structure in Dusty Gas Suspension,” The 14th Mach Reflection Symposium, Sendai, Japan.
3.
Igra
,
O.
, and
Ben-Dor
,
G.
,
1988
, “
Dusty Shock Waves
,”
Appl. Mech. Rev.
,
41
, pp.
379
437
.
4.
Rudinger
,
G.
, and
Chang
,
A.
,
1964
, “
Analysis of Nonsteady Two-Phase Flow
,”
Phys. Fluids
,
7
, pp.
658
663
.
5.
Miura
,
H.
, and
Glass
,
I. I.
,
1983
, “
On the Passage of a Shock Wave Through a Dusty-Gas Layer
,”
Proc. R. Soc. London, Ser. A
,
A385
, pp.
85
105
.
6.
Igra
,
O.
,
Elperin
,
T.
, and
Ben-Dor
,
G.
,
1987
, “
Blast Waves in Dusty Gases
,”
Proc. R. Soc. London, Ser. A
,
A414
, pp.
197
219
.
7.
Aizik
,
F.
,
Ben-Dor
,
G.
,
Elperin
,
T.
,
Igra
,
O.
, and
Mond
,
M.
,
1995
, “
Attenuation Law of Planar Shock Waves Propagating Through Dust-Gas Suspensions
,”
AIAA J.
,
33
, pp.
953
955
.
8.
Ben-Artzi
,
M.
, and
Falcovitz
,
J.
,
1984
, “
A Second-Order Godunov-Type Scheme for Compressible Fluid Dynamics
,”
J. Comput. Phys.
,
55
, pp.
1
32
.
9.
Ben-Artzi
,
M.
, and
Falcovitz
,
J.
,
1986
, “
An Upwind Second-Order Scheme for Compressible Duct Flows
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
,
7
, pp.
744
768
.
10.
Falcovitz
,
J.
, and
Ben-Artzi
,
M.
,
1995
, “
Recent Developments of the GRP Method
,”
JSME Int. J., Ser. B
,
B38
, pp.
497
517
.
11.
MacCormack, R. W., 1969, “The Effect of Viscosity on Hypervelocity Impact Cratering,” AIAA Paper 69-354.
12.
Igra
,
O
,
Falcovitz
,
J.
,
Reichenbach
,
H.
, and
Heilig
,
W.
,
1996
, “
Experimental and Numerical Study of the Interaction Process Between a Planar Shock Wave and a Square Cavity
,”
J. Fluid Mech.
,
313
, pp.
105
130
.
13.
Strang
,
G.
,
1968
, “
On the Construction and Comparison of Difference Schemes
,”
SIAM Journal on Numerical Analysis
,
5
, pp.
506
517
.
14.
Sommerfeld
,
M.
,
1985
, “
The Unsteadiness of Shock Waves Propagating Through Gas-Particle Mixtures
,”
Exp. Fluids
,
3
, pp.
197
206
.
You do not currently have access to this content.