This paper reports on the numerical simulation of rotating flows with free surfaces, typically that arise in dough-kneading situations found within the food processing industry. Free-surface flow in a rotating cylinder is investigated when a fluid is stirred in a cylindrical-shaped vessel with a stirrer attached to its lid. The problem is posed in a three-dimensional cylindrical polar frame of reference. Numerical predictions are based on a Taylor-Galerkin/pressure-correction finite element formulation, with particle tracking to accommodate free-surface movement. Peeling and wetting conditions are incorporated to predict fluid-surface movement in contact with solid boundaries. Free-surface profiles are presented for different speeds of rotation and predictions compare closely to equivalent experimental results. The algorithmic implementation is validated against Newtonian analytical solutions. Typical results are presented to demonstrate the difference between Newtonian and inelastic model fluids.

1.
Wang, H. P., and Lee, H. S., 1989, “Free and Moving Boundary Problems,” Fundamentals of Computer Modeling for Polymer Processing, C. L. Tucker, III, ed., Hanser, Munich.
2.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free-Surface
,”
Phys. Fluids A
,
8
, pp.
2182
2189
.
3.
Welch, J. E., Harlow, F. H., Shannon, J. P., and Daly, B. J., 1965, “The MAC Method: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces,” LASL Report LA-3425, Los Alamos, NM.
4.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
, pp.
201
225
.
5.
Gethin
,
D. T.
,
Lewis
,
R. W.
, and
Tadayon
,
M. R.
,
1992
, “
A Finite Element Approach for Modeling Metal Flow and Pressurized Solidification in the Squeeze Casting Process
,”
Int. J. Numer. Methods Eng.
,
35
, pp.
939
950
.
6.
Wang
,
S. P.
, and
Wang
,
K. K.
,
1994
, “
A Net Inflow Method for Incompressible Viscous Flow With Moving Free Surfaces
,”
Int. J. Numer. Methods Fluids
,
18
, pp.
669
694
.
7.
Rudman
,
M.
,
1997
, “
Volume Tracking Methods for Interfacial Flow Calculations
,”
Int. J. Numer. Methods Fluids
,
24
, pp.
671
691
.
8.
Rudman
,
M.
,
1998
, “
A Volume Tracking Method for Incompressible Multifluid Flows With Large Density Variations
,”
Int. J. Numer. Methods Fluids
,
28
, pp.
357
378
.
9.
Thompson
,
E.
,
1986
, “
Use of Pseudo-Concentration to Follow Creeping Viscous Flows During Transient Analysis
,”
Int. J. Numer. Methods Fluids
,
6
, pp.
749
761
.
10.
Nassehi
,
V.
, and
Ghoreishy
,
M. H. R.
,
1997
, “
Simulation of Free Surface Flow in Partially Filled Internal Mixers
,”
Int. Polym. Process.
,
4
, pp.
346
353
.
11.
Sato
,
T.
, and
Richardson
,
S. M.
,
1994
, “
Numerical Simulation Method for Viscoelastic Flows With Free Surfaces-Fringe Element Generation Method
,”
Int. J. Numer. Methods Fluids
,
19
, pp.
555
574
.
12.
Ding
,
D.
,
Townsend
,
P.
, and
Webster
,
M. F.
,
1997
, “
Finite Element Simulation of an Injection Moulding Process
,”
Int. J. Numer. Methods Heat Fluid Flow
,
7
, pp.
751
766
.
13.
Manogg
,
G. J.
,
Townsend
,
P.
, and
Webster
,
M. F.
,
1997
, “
Numerical Simulation of Multilayer Injection Moulding
,”
J. Non-Newtonian Fluid Mech.
,
68
, pp.
153
167
.
14.
Medale
,
M.
, and
Jaeger
,
M.
,
1997
, “
Numerical Simulation of Incompressible Flows With Moving Interfaces
,”
Int. J. Numer. Methods Fluids
,
24
, pp.
615
638
.
15.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
,
J. L.
,
1974
, “
An Arbitrary Lagrangian-Eulerian Computing Method of All Speeds
,”
J. Comput. Phys.
,
14
, pp.
227
253
.
16.
Ramaswamy
,
B.
,
1990
, “
Numerical Simulation of Unsteady Viscous Free Surface Flow
,”
J. Comput. Phys.
,
90
, pp.
396
430
.
17.
Hughes
,
T. J. R.
, and
Kiu
,
W. K.
,
1981
, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous
,”
Comput. Methods Appl. Mech. Eng.
,
29
, pp.
329
349
.
18.
Sujatha, K. S., and Webster, M. F., 2003, “Modelling Three-Dimensional Rotating Flows in Cylindrical-Shaped Vessels,” Int. J. Numer. Methods Fluids, (in press).
19.
Binding
,
D. M.
,
Couch
,
M. A.
,
Sujatha
,
K. S.
, and
Webster
,
M. F.
,
2003
, “
Experimental and Numerical Simulation of Dough Kneading in Filled Geometries
,”
J. Food. Eng.
,
58
, pp.
111
123
.
20.
Couch, M. A., and Binding, D. M., 2002, “An Experimental Study of the Peeling of Dough From Solid Surfaces,” J. Food. Eng., (in press).
21.
Prakash
,
S.
, and
Kokini
,
J. L.
,
2000
, “
Estimation and Prediction of Shear-Rate Distribution as a Model Mixer
,”
J. Food. Eng.
,
44
, pp.
135
148
.
22.
Prakash
,
S.
, and
Kokini
,
J. L.
,
1999
, “
Determination of Mixing Efficiency in a Model Food Mixer
,”
Adv. Polym. Technol.
,
18
, p.
3
3
.
23.
Prakash
,
S.
,
Karwe
,
M. V.
, and
Kokini
,
J. L.
,
1999
, “
Measurement of Velocity Distribution in the Brabender Farinograph as a Model Mixer, Using Laser-Doppler Anemometry
,”
J. Food. Eng.
,
44
, pp.
435
454
.
24.
Hawken
,
D. M.
,
Tamaddon-Jahromi
,
H. R.
,
Townsend
,
P.
, and
Webster
,
M. F.
,
1990
, “
A Taylor-Galerkin-Based Algorithm for Viscous Incompressible Flow
,”
Int. J. Numer. Methods Fluids
,
10
, pp.
327
351
.
25.
Ding
,
D.
,
Townsend
,
P.
, and
Webster
,
M. F.
,
1995
, “
On Computations of Two and Three-Dimensional Unsteady Thermal Non-Newtonian Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
5
, pp.
495
510
.
26.
Matallah
,
H.
,
Townsend
,
P.
, and
Webster
,
M. F.
,
1998
, “
Recovery and Stress-Splitting Schemes for Viscoelastic Flows
,”
J. Non-Newtonian Fluid Mech.
,
75
, pp.
139
166
.
27.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, John Wiley and Sons, New York.
You do not currently have access to this content.