Solute transport in the fractured porous confined aquifer is modeled by the advection-dispersion equation with fractional time derivative of order γ, which may vary from 0 to 1. Accounting for diffusion in the surrounding rock mass leads to the introduction of an additional fractional time derivative of order 12 in the equation for solute transport. The closed-form solutions for concentrations in the aquifer and surrounding rocks are obtained for the arbitrary time-dependent source of contamination located in the inlet of the aquifer. Based on these solutions, different regimes of contamination of the aquifers with different physical properties are modeled and analyzed.

1.
Neretnieks
,
I.
, 1980, “
Diffusion in the Rock Matrix: An Important Factor in Radionuclide Retardation
,”
J. Geophys. Res.
0148-0227,
85
(
B8
), pp.
4379
4397
.
2.
Neretnieks
,
I.
, 1993, “
Solute Transport in Fractured Rock: Applications to Radionuclide Waste Repositories
,”
Flow and Contaminant Transport in Fractured Rock
,
Academic Press
, New York,
J.
Bear
,
C. F.
Tsang
, and
G.
de Marsily
, eds., pp.
39
127
.
3.
Birkholzer
,
J. T.
,
Li
,
G.
,
Tsang
,
C. F.
, and
Tsang
,
Y.
, 1999, “
Modeling Studies and Analysis of Seepage Into Drifts at Yucca Mountain
,”
J. Contam. Hydrol.
0169-7722,
38
, pp.
349
384
.
4.
Tsang
,
Y. W.
, and
Birkholzer
,
J. T.
, 1999, “
Predictions and Observations of the Thermal-Hydrological Conditions in the Single Heater Test at Yucca Mountain
,”
J. Contam. Hydrol.
0169-7722,
38
, pp.
385
425
.
5.
Tsang
,
Y. W.
, and
Tsang
,
C. F.
, 1987, “
Channel Model of Flow Through Fractured Media
,”
Water Resour. Res.
0043-1397,
23
(
3
), pp.
467
479
.
6.
Tsang
,
Y. W.
, and
Tsang
,
C. F.
, 2001, “
A Particle-Tracking Method for Advective Transport in Fractures With Diffusion Into Finite Matrix Blocks
,”
Water Resour. Res.
0043-1397,
37
(
3
), pp.
831
836
.
7.
Schumer
,
R.
,
Benson
,
D. A.
,
Meerschaert
,
M. M.
, and
Baeumer
,
B.
, 2003, “
Fractal Mobile/Immobile Transport
,”
Water Resour. Res.
0043-1397,
39
(
10
), 1296, pp.
SBH13(1)
SBH13(12)
.
8.
Becker
,
M. W.
, and
Shapiro
,
A. M.
, 2000, “
Tracer Transport in Fractured Crystalline Rock: Evidence of Non-Diffusive Breakthrough Tailing
,”
Water Resour. Res.
0043-1397,
36
(
7
), pp.
1677
1686
.
9.
Haggerty
,
R.
,
McKenna
,
S. A.
, and
Meigs
,
L. C.
, 2000, “
On the Late-Time Behavior of Tracer Test Breakthrough Curves
,”
Water Resour. Res.
0043-1397,
36
(
12
), pp.
3467
3479
.
10.
Reimus
,
P. W.
,
Pohll
,
G.
,
Mihevc
,
T.
,
Chapman
,
J.
,
Haga
,
M.
,
Lyles
,
B.
,
Kosinski
,
S.
,
Niswonger
,
R.
, and
Sanders
,
P.
, 2003, “
Testing and Parameterizing a Conceptual Model for Solute Transport in a Fractured Granite Using Multiple Tracers in a Forced Gradient Test
,”
Water Resour. Res.
0043-1397,
39
(
12
), 1356, pp.
SBH14(1)
SBH14(15)
.
11.
Benson
,
D. A.
,
Wheatcraft
,
S. W.
, and
Meerschaert
,
M. M.
, 2000, “
Application of a Fractional Advection-Dispersion Equation
,”
Water Resour. Res.
0043-1397,
36
(
6
), pp.
1403
1412
.
12.
Benson
,
D. A.
,
Schumer
,
R.
,
Meerschaert
,
M. M.
, and
Wheatcraft
,
S. W.
, 2001, “
Fractional Dispersion, Levy Motion, and the MADE Tracer Tests
,”
Transp. Porous Media
0169-3913,
42
, pp.
211
240
.
13.
Baeumer
,
B.
,
Meerschaert
,
M. M.
,
Benson
,
D. A.
, and
Wheatcraft
,
S. W.
, 2001, “
Subordinated Advection-Dispersion Equation for Contaminant Transport
,”
Water Resour. Res.
0043-1397,
37
(
6
), pp.
1543
1550
.
14.
Herrick
,
M.
,
Benson
,
D.
,
Meerschaert
,
M.
, and
McCall
,
K.
, 2002, “
Hydraulic Conductivity, Velocity, and the Order of the Fractional Dispersion Derivative in a Highly Heterogeneous System
,”
Water Resour. Res.
0043-1397,
38
(
11
), pp.
1227
1239
.
15.
Meerschaert
,
M. M.
,
Benson
,
D. A.
, and
Baeumer
,
B.
, 1999, “
Multidimensional Advection and Fractional Dispersion
,”
Phys. Rev. E
1063-651X,
59
, pp.
5026
5028
.
16.
Cunningham
,
J. A.
,
Werth
,
C. J.
,
Reinhard
,
M.
, and
Roberts
,
P. V.
, 1997, “
Effects of Grain-Scale Mass Transfer on the Transport of Volatile Organics Through Sediments: 1. Model Development
,”
Water Resour. Res.
0043-1397,
33
(
12
), pp.
2713
2726
.
17.
Haggerty
,
R.
, and
Gorelick
,
S. M.
, 1995, “
Multiple-Rate Mass Transfer for Modeling Diffusion and Surface Reactions in Media With Pore-scale Heterogeneity
,”
Water Resour. Res.
0043-1397,
31
(
10
), pp.
2383
2400
.
18.
Carrera
,
J.
,
Sanchez-Vila
,
X.
,
Benet
,
I.
,
Medina
,
A.
,
Galarza
,
G.
, and
Guimera
,
J.
, 1998, “
On Matrix Diffusion: Formulations, Solution Methods and Qualitative Effects
,”
Hydrogeol. J.
1431-2174,
6
, pp.
178
190
.
19.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
, 1993,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
, London.
20.
Kennedy
,
C. A.
, and
Lennox
,
W. C.
, 1995, “
A Control Volume Model of Solute Transport in a Single Fracture
,”
Water Resour. Res.
0043-1397,
31
(
2
), pp.
313
322
.
21.
Giona
,
M.
, and
Roman
,
H. E.
, 1992, “
Fractional Diffusion Equation on Fractals: One-Dimensional Case and Asymptotic Behavior
,”
J. Phys. A
0305-4470,
25
, pp.
2093
2105
.
You do not currently have access to this content.