In multijet common rail (CR) systems, the capability to manage multiple injections with full flexibility in the choice of the dwell time (DT) between consecutive solenoid current pulses is one of the most relevant design targets. Pressure oscillations triggered by the nozzle closure after each injection event induce disturbances in the amount of fuel injected during subsequent injections. This causes a remarkable dispersion in the mass of fuel injected when DT is varied. The effects of the hydraulic circuit layout of CR systems were investigated with the objective to provide design rules for reducing the dependence of the injected fuel amount on DT. A multijet CR of the latest solenoid-type generation was experimentally analyzed at different operating conditions on a high performance test bench. The considerable influence that the injector-supplying pipe dimensions can exert on the frequency and amplitude of the injection-induced pressure oscillations was widely investigated and a physical explanation of cause-effect relationships was found by energetics considerations, starting from experimental tests. A parametric study was performed to identify the best geometrical configurations of the injector-supplying pipe so as to minimize pressure oscillations. The analysis was carried out with the aid of a previously developed simple zero-dimensional model, allowing the evaluation of pressure-wave frequencies as functions of main system geometric data. Pipes of innovative aspect ratio and capable of halving the amplitude of injected-volume fluctuations versus DT were proposed. Purposely designed orifices were introduced into the rail-pipe connectors of a commercial automotive injection system, so as to damp pressure oscillations. Their effects on multiple-injection performance were experimentally determined as being sensible. The resulting reduction in the injector fueling capacity was quantified. It increased by lowering the orifice diameter. The application of the orifice to the injector inlet-pipe with innovative aspect ratio led to a hydraulic circuit solution, which coupled active and passive damping of the pressure waves and minimized the disturbances in injected fuel volumes. Finally, the influence of the rail capacity on pressure-wave dynamics was studied and the possibility of severely reducing the rail volume (up to one-fourth) was assessed. This can lead to a system not only with reduced overall sizes but also with a prompter dynamic response during engine transients.
Skip Nav Destination
Article navigation
December 2008
Research Papers
Hydraulic Circuit Design Rules to Remove the Dependence of the Injected Fuel Amount on Dwell Time in Multijet CR Systems
Mirko Baratta,
Mirko Baratta
IC Engines Advanced Laboratory,
Politecnico di Torino
, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
Search for other works by this author on:
Andrea Emilio Catania,
Andrea Emilio Catania
IC Engines Advanced Laboratory,
Politecnico di Torino
, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
Search for other works by this author on:
Alessandro Ferrari
Alessandro Ferrari
IC Engines Advanced Laboratory,
Politecnico di Torino
, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
Search for other works by this author on:
Mirko Baratta
IC Engines Advanced Laboratory,
Politecnico di Torino
, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
Andrea Emilio Catania
IC Engines Advanced Laboratory,
Politecnico di Torino
, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
Alessandro Ferrari
IC Engines Advanced Laboratory,
Politecnico di Torino
, C.so Duca degli Abruzzi 24, 10129 Torino, ItalyJ. Fluids Eng. Dec 2008, 130(12): 121104 (13 pages)
Published Online: October 27, 2008
Article history
Received:
July 30, 2007
Revised:
June 10, 2008
Published:
October 27, 2008
Citation
Baratta, M., Catania, A. E., and Ferrari, A. (October 27, 2008). "Hydraulic Circuit Design Rules to Remove the Dependence of the Injected Fuel Amount on Dwell Time in Multijet CR Systems." ASME. J. Fluids Eng. December 2008; 130(12): 121104. https://doi.org/10.1115/1.2969443
Download citation file:
Get Email Alerts
Related Articles
Development and Application of a Complete Multijet Common-Rail Injection-System Mathematical Model for Hydrodynamic Analysis and Diagnostics
J. Eng. Gas Turbines Power (November,2008)
Experimental Investigation of Dynamics Effects on Multiple-Injection
Common Rail System Performance
J. Eng. Gas Turbines Power (May,2008)
Numerical Analysis and Experimental Investigation of a Common Rail-Type Diesel Injector
J. Eng. Gas Turbines Power (October,2004)
Numerical-Experimental Study and Solutions to Reduce the Dwell-Time Threshold for Fusion-Free Consecutive Injections in a Multijet Solenoid-Type CR System
J. Eng. Gas Turbines Power (March,2009)
Related Proceedings Papers
Related Chapters
Openings
Guidebook for the Design of ASME Section VIII Pressure Vessels, Third Edition
Overview of Section XI Stipulations
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes
Openings
Guidebook for the Design of ASME Section VIII Pressure Vessels