Recent numerical simulations have indicated the potential of plasma-based active flow control for improving the efficiency of highly loaded low-pressure turbines. The configuration considered in the current and earlier simulations correspond to previous experiments and computations for the flow at a Reynolds number of 25,000 based on axial chord and inlet conditions. In this situation, massive separation occurs on the suction surface of each blade due to uncovered turning, causing blockage in the flow passage. It was numerically demonstrated that asymmetric dielectric-barrier-discharge actuators were able to mitigate separation, thereby decreasing turbine wake losses. The present investigation extends this work by investigating a number of plasma-based flow control strategies. These include the chordwise location of actuation, spanwise periodic arrays of actuators, multiple actuation in the streamwise direction, and spanwise-direct actuation. The effect of alternate plasma-force models is also considered. Solutions were obtained to the Navier–Stokes equations, which were augmented by source terms used to represent plasma-induced body forces imparted by an actuator on the fluid. The numerical method utilized a high-fidelity time-implicit scheme, employing domain decomposition to carry out calculations on a parallel computing platform. A high-order overset grid approach preserved spatial accuracy in locally refined embedded regions. Features of the flowfields are described, and resultant solutions are compared to each other, with a previously obtained control case, and with the base line situation where no control was enforced.

1.
Sondergaard
,
R.
,
Bons
,
J. P.
,
Sucher
,
M.
, and
Rivir
,
R. B.
, 2002, “
Reducing Low-Pressure Turbine Stage Blade Count Using Vortex Generator Jet Separation Control
,” ASME Paper No. GT-2002-30602.
2.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, 1999, “
Control of Low-Pressure Turbine Separation Using Vortex Generator Jets
,” AIAA Paper No. 99-0367.
3.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, 2001, “
Turbine Separation Control Using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
0889-504X,
123
(
2
), pp.
198
206
.
4.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, 2002, “
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
77
85
.
5.
Sondergaard
,
R.
,
Rivir
,
R. B.
, and
Bons
,
J. P.
, 2002, “
Control of Low-Pressure Turbine Separation Using Vortex Generator Jets
,”
J. Propul. Power
0748-4658,
18
(
4
), pp.
889
895
.
6.
List
,
J.
,
Byerley
,
A. R.
,
McLaughlin
,
T. E.
, and
Dyken
,
R. D.
, 2003, “
Using a Plasma Actuator to Control Laminar Separation on a Linear Cascade Turbine Blade
,” AIAA Paper No. 2003-1026.
7.
Huang
,
J.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
, 2003, “
Plasma Actuators for Separation Control of Low Pressure Turbine Blades
,” AIAA Paper No. 2003-1027.
8.
Corke
,
T. C.
, and
Post
,
M. L.
, 2005, “
Overview of Plasma Flow Control: Concepts, Optimization, and Applications
,” AIAA Paper No. 2005-0563.
9.
Huang
,
J.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
, 2006, “
Plasma Actuators for Separation Control of Low-Pressure Turbine Blades
,”
AIAA J.
0001-1452,
44
(
1
), pp.
51
57
.
10.
Huang
,
J.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
, 2006, “
Unsteady Plasma Actuators for Separation Control of Low-Pressure Turbine Blades
,”
AIAA J.
0001-1452,
44
(
7
), pp.
1477
1487
.
11.
Lorber
,
P.
,
McCormick
,
D.
,
Anderson
,
T.
,
Wake
,
D.
,
MacMartin
,
D.
,
Pollack
,
M.
,
Corke
,
T.
, and
Breuer
,
K.
, 2000, “
Rotorcraft Retreating Blade Stall Control
,” AIAA Paper No. 2000-2475.
12.
Corke
,
T. C.
,
Jumper
,
E. J.
,
Post
,
M. L.
,
Orlov
,
D.
, and
McLaughlin
,
T. E.
, 2002, “
Application of Weakly-Ionized Plasmas as Wing Flow-Control Devices
,” AIAA Paper No. 2002-0350.
13.
Post
,
M. L.
, and
Corke
,
T. C.
, 2003, “
Separation Control on High Angle of Attack Airfoil Using Plasma Actuators
,” AIAA Paper No. 2003-1024.
14.
Post
,
M. L.
, and
Corke
,
T. C.
, 2004, “
Separation Control Using Plasma Actuators-Stationary and Oscillating Airfoils
,” AIAA Paper No. 2004-0841.
15.
Corke
,
T. C.
,
He
,
C.
, and
Patel
,
M. P.
, 2004, “
Plasma Flaps and Slats: An Application of Weakly-Ionized Plasma Actuators
,” AIAA Paper No. 2004-2127.
16.
Post
,
M. L.
, and
Corke
,
T. C.
, 2004, “
Separation Control Using Plasma Actuators-Dynamic Stall Control on an Oscillating Airfoil
,” AIAA Paper No. 2004-2517.
17.
Morris
,
S. C.
,
Corke
,
T. C.
,
VanNess
,
D.
,
Stephens
,
J.
, and
Douville
,
T.
, 2005, AIAA Paper No. 2005-0782.
18.
Thomas
,
F. O.
,
Kozlov
,
A.
, and
Corke
,
T. C.
, 2006, “
Plasma Actuators for Bluff Body Flow Control
,” AIAA Paper No. 2006-2845.
19.
Patel
,
M. P.
,
Ng
,
T. T.
,
Vasudevan
,
S.
,
Corke
,
T. C.
, and
He
,
C.
, 2006, “
Plasma Actuators for Hingeless Aerodynamic Control of an Unmanned Air Vehicle
,” AIAA Paper No. 2006-3495.
20.
Raverdy
,
B.
,
Mary
,
I.
,
Sagaut
,
P.
, and
Liamis
,
N.
, 2001, “
Large-Eddy Simulation of the Flow Around a Low Pressure Turbine Blade
,”
Direct and Large-Eddy Simulation IV
(
ERCOFTAC Series
Vol.
8
),
B. J.
Guerts
,
R.
Friedrich
, and
O.
Metais
, eds.,
Kluwer Academic
,
Dordrecht, The Netherlands
, pp.
381
388
.
21.
Mittal
,
R.
,
Venkatasubramanian
,
S.
, and
Najjar
,
F. M.
, 2001, “
Large-Eddy Simulation of Flow Through a Low-Pressure Turbine Cascade
,” AIAA Paper No. 2001-2560.
22.
Postl
,
D.
,
Gross
,
A.
, and
Fasel
,
H. F.
, 2003, “
Numerical Investigation of Low-Pressure Turbine Blade Separation Control
,” AIAA Paper No. 2003-0614.
23.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2003, “
Numerical Investigation of Transitional Flow Through a Low-Pressure Turbine Cascade
,” AIAA Paper No. 2003-3587.
24.
Wissink
,
J. G.
, 2003, “
DNS of Separating, Low-Reynolds Number Flow in a Turbine Cascade With Incoming Wakes
,”
Int. J. Heat Fluid Flow
0142-727X,
24
(
4
), pp.
626
635
.
25.
Kalitzin
,
G.
,
Wu
,
X.
, and
Durbin
,
P. A.
, 2003, “
DNS of Fully Turbulent Flow in a LPT Passage
,”
Int. J. Heat Fluid Flow
0142-727X,
24
(
4
), pp.
636
644
.
26.
Postl
,
D.
,
Gross
,
A.
, and
Fasel
,
H. F.
, 2004, “
Numerical Investigation of Active Flow Control for Low-Pressure Turbine Blade Separation
,” AIAA Paper No. 2004–750.
27.
Gross
,
A.
, and
Fasel
,
H. F.
, 2004, “
Active Control of Separation for Low-Pressure Turbine Blades
,” AIAA Paper No. 2004-2203.
28.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2004, “
Numerical Simulation of Separation Control for a Highly-Loaded Low-Pressure Turbine
,”
AIAA J.
0001-1452,
43
(
9
), pp.
1958
1967
.
29.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2006, “
Numerical Study of Active Flow Control for a Transitional Highly-Loaded Low-Pressure Turbine
,”
ASME J. Fluids Eng.
0098-2202,
128
(
5
), pp.
956
967
.
30.
Gaitonde
,
D. V.
,
Visbal
,
M. R.
, and
Roy
,
S.
, 2005, “
Control of Flow Past a Wing Section With Plasma-Based Body Forces
,” AIAA Paper No. 2005-5302.
31.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
, 2005, “
Control of Vortical Flows Using Simulated Plasma Actuators
,” AIAA Paper No. 2006-0505.
32.
Visbal
,
M. R.
,
Gaitonde
,
D. V.
, and
Roy
,
S.
, 2006, “
Control of Transitional and Turbulent Flows Using Plasma-Based Actuators
,” AIAA Paper No. 2006-3230.
33.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2007, “
Numerical Investigation of Plasma-Based Flow Control for a Transitional Highly-Loaded
,” AIAA Paper No. 2007-938.
34.
Beam
,
R.
, and
Warming
,
R.
, 1978, “
An Implicit Factored Scheme for the Compressible Navier-Stokes Equations
,”
AIAA J.
0001-1452,
16
(
4
), pp.
393
402
.
35.
Gordnier
,
R. E.
, and
Visbal
,
M. R.
, 1993, “
Numerical Simulation of Delta-Wing Roll
,” AIAA Paper No. 93-0554.
36.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
, 1981, “
Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes
,” AIAA Paper No. 81-1259.
37.
Pulliam
,
T. H.
, and
Chaussee
,
D. S.
, 1981, “
A Diagonal Form of an Implicit Approximate-Factorization Algorithm
,”
J. Comput. Phys.
0021-9991,
39
(
2
), pp.
347
363
.
38.
Lele
,
S. A.
, 1992, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
0021-9991,
103
(
2
), pp.
16
42
.
39.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
, 1999, “
High-Order-Accurate Methods for Complex Unsteady Subsonic Flows
,”
AIAA J.
0001-1452,
37
(
10
), pp.
1231
1239
.
40.
Gaitonde
,
D.
,
Shang
,
J. S.
, and
Young
,
J. L.
, 1997, “
Practical Aspects of High-Order Accurate Finite-Volume Schemes for Electromagnetics
,” AIAA Paper No. 97-0363.
41.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2007, “
Simulation of Plasma-Based Flow-Control Strategies for Transitional Highly Loaded Low-Pressure Turbines
,” AIAA Paper No. 2007-4216.
42.
Gaitonde
,
D.
, and
Visbal
,
M. R.
, 1998, “
High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation into FDL3DI
,” Air Force Research Laboratory, Technical Report No. AFRL-VA-WP-TR-1998–3060.
43.
Gordnier
,
R. E.
, 1995, “
Computation of Delta-Wing Roll Maneuvers
,”
J. Aircr.
0021-8669,
32
(
3
), pp.
486
492
.
44.
Visbal
,
M. R.
, 1993, “
Computational Study of Vortex Breakdown on a Pitching Delta Wing
,” AIAA Paper No. 93-2974.
45.
Visbal
,
M.
,
Gaitonde
,
D.
, and
Gogineni
,
S.
, 1998, “
Direct Numerical Simulation of a Forced Transitional Plane Wall Jet
,” AIAA Paper No. 98-2643.
46.
Rizzetta
,
D. P.
,
Visbal
,
M. R.
, and
Stanek
,
M. J.
, 1999, “
Numerical Investigation of Synthetic-Jet Flowfields
,”
AIAA J.
0001-1452,
37
(
8
), pp.
919
927
.
47.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2006, “
Direct Numerical Simulation of Flow Past an Array of Distributed Roughness Elements
,” AIAA Paper No. 2006-3527.
48.
Rizzetta
,
D. P.
,
Visbal
,
M. R.
, and
Blaisdell
,
G. A.
, 2003, “
A Time-Implicit High-Order Compact Differencing and Filtering Scheme for Large-Eddy Simulation
,”
Int. J. Numer. Methods Fluids
0271-2091,
42
(
6
), pp.
665
693
.
49.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2002, “
Application of Large-Eddy Simulation to Supersonic Compression Ramps
,”
AIAA J.
0001-1452,
40
(
8
), pp.
1574
1581
.
50.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
, 2003, “
Large-Eddy Simulation of Supersonic Cavity Flowfields Including Flow Control
,”
AIAA J.
0001-1452,
41
(
8
), pp.
452
1462
.
51.
Roth
,
J. R.
, 2003, “
Aerodynamic Flow Acceleration Using Paraelectric and Peristaltic Electrohydrodynamic Effects of a One Atmosphere Uniform Glow Discharge Plasma
,”
Phys. Plasmas
1070-664X,
10
(
5
), pp.
2117
2128
.
52.
Roth
,
J. R.
,
Sin
,
H.
, and
Madham
,
R. C. M.
, 2003, “
Flow Re-Attachment and Acceleration by Paraelectric and Peristaltic Electrohydrodynamic (EHD) Effects
,” AIAA Paper No. 2003-0531.
53.
Shyy
,
W.
,
Jayaraman
,
B.
, and
Anderson
,
A.
, 2002, “
Modeling of Glow Discharge-Induced Fluid Dynamics
,”
J. Appl. Phys.
0021-8979,
92
(
11
), pp.
6434
6443
.
54.
Steinbrenner
,
J. P.
,
Chawner
,
J. P.
, and
Fouts
,
C. L.
, 1991, “
The GRIDGEN 3D Multiple Block Grid Generation System, Volume II: User’s Manual
,” Wright Research and Development Center, Technical Report No. WRDC-TR-90–3022.
55.
Gruber
,
B.
, and
Carstens
,
V.
, 2001, “
The Impact of Viscous Effects on the Aerodynamic Damping of Vibrating Transonic Compressor Blades: A Numerical Study
,”
ASME J. Turbomach.
0889-504X,
123
(
2
), pp.
409
417
.
56.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
, 2001, “
Very High-Order Spatially Implicit Schemes for Computational Acoustics on Curvilinear Meshes
,”
J. Comput. Acoust.
0218-396X,
9
(
4
), pp.
1259
1286
.
57.
Sherer
,
S. E.
, 2003, “
Further Analysis of High-Order Overset Grid Method With Applications
,” AIAA Paper No. 2003-3839.
58.
Suhs
,
N. E.
,
Rogers
,
S. E.
, and
Dietz
,
W. E.
, 2003, “
PEGASUS 5: An Automated Preprocessor for Overset-Grid Computational Fluid Dynamics
,”
AIAA J.
0001-1452,
41
(
6
), pp.
1037
1045
.
59.
Message Passing Interface Forum
, 1994, “
MPI: A Message-Passing Interface Standard
,” Computer Science Department, Technical Report No. CS-94–230.
60.
He
,
C.
, and
Corke
,
T. C.
, 2007, “
Numerical and Experimental Analysis of Plasma Flow Control Over a Hump Model
,” AIAA Paper No. 2007-935.
61.
Balagangadhar
,
D.
, and
Roy
,
S.
, 2001, “
Design Sensitivity Analysis and Optimization of Steady Fluid-Thermal Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
42
), pp.
5465
5479
.
62.
Roy
,
S.
, and
Pandey
,
B. P.
, 2003, “
Development of a Finite Element-Based Hall-Thruster Model
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
964
971
.
63.
Roy
,
S.
,
Singh
,
K. P.
,
Kumar
,
H.
,
Gaitonde
,
D. V.
, and
Visbal
,
M.
, 2006, “
Effective Discharge Dynamics for Plasma Actuators
,” AIAA Paper No. 2006-374.
64.
Enloe
,
C. L.
,
McLaughlin
,
T. E.
,
VanDyken
,
R. D.
,
Kachner
,
K. D.
,
Jumper
,
E. J.
, and
Corke
,
T. C.
, 2004, “
Mechanism and Responses of a Single Dielectric Barrier Plasma Actuator: Geometric Effects
,”
AIAA J.
0001-1452,
42
(
3
), pp.
595
604
.
65.
Orlov
,
D. M.
, and
Corke
,
T. C.
, 2005, “
Numerical Simulation of Aerodynamic Plasma Actuator Effects
,” AIAA Paper No. 2005-1083.
66.
Gaitonde
,
D. V.
,
Visbal
,
M. R.
, and
Roy
,
S.
, 2006, “
A Coupled Approach for Plasma-Based Flow Control Simulation of Wing Sections
,” AIAA Paper No. 2006-1205.
You do not currently have access to this content.