A direct simulation Monte Carlo method (DSMC) solver, adapted to the subsonic microflow, is developed under the object-conception language (C++). Some technical details critical in these DSMC computations are provided. The numerical simulations of gas flow in a microchannel are carried out using the developed DSMC solver. Streamwise velocity distributions in the slip flow regime are compared with the analytical solution based on the Navier–Stokes equations with the velocity slip boundary condition. Satisfactory agreements have been achieved. Furthermore, the domain of the validity of this continuum approach is discussed. Simulations are then extended to the transitional flow regime. Streamwise velocity distributions are also compared with the results of the numerical solutions of the linearized Boltzmann equation. We emphasize the influence of the accommodation coefficient on the velocity profiles and on the mass flow rate. The simulation results on the mass flow rate are compared with the experimental data, which allow us to validate the “experimental” technique of the determination of the accommodation coefficient.

1.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford Science
,
Clarendon Press
,
Oxford
.
2.
Oh
,
C. K.
,
Oran
,
E. S.
, and
Sinkovits
,
R. S.
, 1997, “
Computations of High-Speed, High Knudsen Number Microchannel Flow
,”
J. Thermophys. Heat Transfer
0887-8722,
11
(
4
), pp.
497
505
.
3.
Mavriplis
,
C.
,
Ahm
,
J. C.
, and
Goulard
,
R.
, 1997, “
Heat Transfer and Flowfields in Short Microchannels Using Direct Simulation Monte Carlo
,”
J. Thermophys. Heat Transfer
0887-8722,
11
(
4
), pp.
489
496
.
4.
Liou
,
W. W.
, and
Fang
,
Y.
, 2001, “
Heat Transfer in Microchannel Devices Using DSMC
,”
J. Microelectromech. Syst.
1057-7157,
10
(
2
), pp.
274
279
.
5.
Le
,
M.
,
Hassan
,
I.
, and
Esmail
,
N.
, 2007, “
The Effect of Outlet Boundary Conditions on Simulating Supersonic Microchannel Flows Using DSMC
,”
Appl. Therm. Eng.
,
27
, pp.
21
30
. 1359-4311
6.
Loyalka
,
S. K.
, 1975, “
Kinetic Theory of Thermal Transpiration and Mechanocaloric Effects II
,”
J. Chem. Phys.
0021-9606,
63
(
9
), pp.
4054
4960
.
7.
Ohwada
,
T .
,
Sone
,
Y.
, and
Aoki
,
K.
, 1989, “
Numerical Analysis of the Poiseuille and Thermal Transpiration Flows Between Two Parallel Plates on the Basis of the Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids A
0899-8213,
1
(
12
), pp.
2042
2049
.
8.
Graur
,
I. A.
,
Méolans
,
J. G.
, and
Zeitoun
,
D. E.
, 2006, “
Analytical and Numerical Description for Isothermal Gas Flows in Microchannels
,”
Microfluid. Nanofluid.
1613-4982,
2
, pp.
64
77
.
9.
Ewart
,
T.
,
Perrier
,
P.
,
Graur
,
I. A.
, and
Méolans
,
J. G.
, 2007, “
Mass Flow Rate Measurements From Hydrodynamic to Near Free Molecular Regimes
,”
J. Fluid Mech.
0022-1120,
584
, pp.
337
356
.
10.
Chapman
,
S.
, and
Cowling
,
T. G.
, 1952,
The Mathematical Theory of Non-Uniform Gases
,
Cambridge University Press
,
Cambridge
.
11.
Loyalka
,
S. K.
,
Petrellis
,
N.
, and
Stvorick
,
S. T.
, 1975, “
Some Numerical Results for the BGK Model: Thermal Creep and Viscous Slip Problems With Arbitrary Accommodation at the Surface
,”
Phys. Fluids
,
18
(
9
), pp.
1094
1099
. 1070-6631
12.
Plimpton
,
S.
, and
Bartel
,
T.
, 1992, “
DSMC Simulation of Rarefied Gas Dynamics on a Large Hypercube Supercomputer
,” AIAA Paper No. AIAA 92–2860.
13.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
, 1997, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
167
178
.
14.
Maxwell
,
J. C.
, 1879, “
On Stress in Rarefied Gases Arising From Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
0370-2316,
170
, pp.
231
256
.
15.
Albertoni
,
S.
,
Cercignani
,
C.
, and
Gotusso
,
L.
, 1963, “
Numerical Evaluation of the Slip Coefficient
,”
Phys. Fluids
,
6
, pp.
993
996
. 1070-6631
16.
Cercignani
,
C.
, 1990,
Mathematical Methods in Kinetic Theory
,
Plenum
,
New York
.
17.
Ameurr
,
D.
,
Croizet
,
C.
,
Maroteau
,
F.
, and
Gatignol
,
R.
, 2006, “
Microfilter Flow Modelling With DSMC Method
,”
Proc. sur CD-ROM du 3éme Congrès Français de Microfluidique SHF
,
Toulouse
, December.
18.
Sharipov
,
F.
, and
Seleznev
,
V.
, 1998, “
Data on International Rarefied Gas Flows
,”
J. Phys. Chem. Ref. Data
,
27
(
3
), pp.
657
709
. 0047-2689
19.
Sharipov
,
F.
, 1999, “
Rarefied Gas Flow Through a Long Rectangular Channel
,”
J. Vac. Sci. Technol. A
0734-2101,
17
(
5
), pp.
3062
3066
.
20.
Cercignani
,
C.
, and
Lampis
,
M.
, 1971, “
Kinetic Model for Gas-Surface Interaction
,”
Transp. Theory Stat. Phys.
0041-1450,
1
, pp.
101
114
.
21.
Méolans
,
J. G.
, and
Dadzie
,
S. K.
, 2005, “
Scattering Kernel for Polyatomic Molecules
,”
J. Math. Phys.
0022-2488,
46
, p.
062101
.
You do not currently have access to this content.