A direct simulation Monte Carlo method (DSMC) solver, adapted to the subsonic microflow, is developed under the object-conception language (C++). Some technical details critical in these DSMC computations are provided. The numerical simulations of gas flow in a microchannel are carried out using the developed DSMC solver. Streamwise velocity distributions in the slip flow regime are compared with the analytical solution based on the Navier–Stokes equations with the velocity slip boundary condition. Satisfactory agreements have been achieved. Furthermore, the domain of the validity of this continuum approach is discussed. Simulations are then extended to the transitional flow regime. Streamwise velocity distributions are also compared with the results of the numerical solutions of the linearized Boltzmann equation. We emphasize the influence of the accommodation coefficient on the velocity profiles and on the mass flow rate. The simulation results on the mass flow rate are compared with the experimental data, which allow us to validate the “experimental” technique of the determination of the accommodation coefficient.
Skip Nav Destination
e-mail: irina.graour@polytech.univ-mrs.fr
Article navigation
January 2009
Technical Briefs
DSMC Simulation: Validation and Application to Low Speed Gas Flows in Microchannels
T. Ewart,
T. Ewart
Universite de Provence-Ecole Polytechnique Universitaire de Marseille
, UMR CNRS 6595, 5 Rue Enrico Fermi, 13453 Marseille, France
Search for other works by this author on:
J. L. Firpo,
J. L. Firpo
Universite de Provence-Ecole Polytechnique Universitaire de Marseille
, UMR CNRS 6595, 5 Rue Enrico Fermi, 13453 Marseille, France
Search for other works by this author on:
I. A. Graur,
e-mail: irina.graour@polytech.univ-mrs.fr
I. A. Graur
Universite de Provence-Ecole Polytechnique Universitaire de Marseille
, UMR CNRS 6595, 5 Rue Enrico Fermi, 13453 Marseille, France
Search for other works by this author on:
P. Perrier,
P. Perrier
Universite de Provence-Ecole Polytechnique Universitaire de Marseille
, UMR CNRS 6595, 5 Rue Enrico Fermi, 13453 Marseille, France
Search for other works by this author on:
J. G. Méolans
J. G. Méolans
Universite de Provence-Ecole Polytechnique Universitaire de Marseille
, UMR CNRS 6595, 5 Rue Enrico Fermi, 13453 Marseille, France
Search for other works by this author on:
T. Ewart
Universite de Provence-Ecole Polytechnique Universitaire de Marseille
, UMR CNRS 6595, 5 Rue Enrico Fermi, 13453 Marseille, France
J. L. Firpo
Universite de Provence-Ecole Polytechnique Universitaire de Marseille
, UMR CNRS 6595, 5 Rue Enrico Fermi, 13453 Marseille, France
I. A. Graur
Universite de Provence-Ecole Polytechnique Universitaire de Marseille
, UMR CNRS 6595, 5 Rue Enrico Fermi, 13453 Marseille, Francee-mail: irina.graour@polytech.univ-mrs.fr
P. Perrier
Universite de Provence-Ecole Polytechnique Universitaire de Marseille
, UMR CNRS 6595, 5 Rue Enrico Fermi, 13453 Marseille, France
J. G. Méolans
Universite de Provence-Ecole Polytechnique Universitaire de Marseille
, UMR CNRS 6595, 5 Rue Enrico Fermi, 13453 Marseille, FranceJ. Fluids Eng. Jan 2009, 131(1): 014501 (6 pages)
Published Online: December 2, 2008
Article history
Received:
April 22, 2008
Revised:
October 3, 2008
Published:
December 2, 2008
Citation
Ewart, T., Firpo, J. L., Graur, I. A., Perrier, P., and Méolans, J. G. (December 2, 2008). "DSMC Simulation: Validation and Application to Low Speed Gas Flows in Microchannels." ASME. J. Fluids Eng. January 2009; 131(1): 014501. https://doi.org/10.1115/1.3026733
Download citation file:
Get Email Alerts
Related Articles
Microscale Falling Cylinder Viscometer With Slip Boundary
J. Fluids Eng (August,2010)
Conjugate Thermal Transport in Gas Flow in Long Rectangular Microchannel
J. Electron. Packag (June,2011)
Incompressible Criterion and Pressure Drop for Gaseous Slip Flow in Circular and Noncircular Microchannels
J. Fluids Eng (July,2011)
Friction Factor Correlations for Gas Flow in Slip Flow Regime
J. Fluids Eng (October,2007)
Related Proceedings Papers
Related Chapters
Key Parameters Used in Modeling Pressure Loss of Fibrous Filter Media
Fluid Filtration: Gas Volume I
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Fluid Flow Applications
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow