Small vertical axis wind turbines (VAWTs) are good candidates to extract energy from wind in urban areas because they are easy to install, service, and do not generate much noise; however, the efficiency of small turbines is low. Here-in a new turbine, with high efficiency, is proposed. The novel design is based on the classical H-Darrieus VAWT. VAWTs produce the highest power when the blade chord is perpendicular to the incoming wind direction. The basic idea behind the proposed turbine is to extend that said region of maximum power by having the blades continue straight instead of following a circular path. This motion can be performed if the blades turn along two axes; hence, it was named dual vertical axis wind turbine (D-VAWT). The analysis of this new turbine is done through the use of computational fluid dynamics (CFD) with two-dimensional (2D) and three-dimensional (3D) simulations. While 2D is used to validate the methodology, 3D is used to get an accurate estimate of the turbine performance. The analysis of a single blade is performed and the turbine shows that a power coefficient of 0.4 can be achieved, reaching performance levels high enough to compete with the most efficient VAWTs. The D-VAWT is still far from full optimization, but the analysis presented here shows the hidden potential and serves as proof of concept.

References

1.
Eriksson
,
S.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2008
, “
Evaluation of Different Turbine Concepts for Wind Power
,”
Renewable Sustainable Energy Rev.
,
12
(
5
), pp.
1419
1434
.
2.
ANSYS,
2011
, “
ANSYS FLUENT 14.0 User's Guide
,” ANSYS Inc., Canonsburg, PA, accessed Aug. 14, 2017, www.fluent.com
3.
Ponta
,
F. L.
,
Seminara
,
J. J.
, and
Otero
,
A. D.
,
2007
, “
On the Aerodynamics of Variable-Geometry Oval-Trajectory Darrieus Wind Turbines
,”
Renewable Energy
,
32
(
1
), pp.
35
56
.
4.
Ponta
,
F. L.
, and
Lago
,
L. I.
,
2008
, “
Analysing the Suspension System of Variable-Geometry Oval-Trajectory (VGOT) Darrieus Wind Turbines
,”
Energy Sustainable Dev.
,
12
(
2
), pp.
5
16
.
5.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Computational Fluid Dynamics Analysis of a Hydrokinetic Turbine Based on Oscillating Hydrofoils
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021104
.
6.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Three-Dimensional Effects on an Oscillating-Foil Hydrokinetic Turbine
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071105
.
7.
Kinsey
,
T.
,
Dumas
,
G.
,
Lalande
,
G.
,
Ruel
,
J.
,
Méhut
,
A.
,
Viarouge
,
P.
,
Lemay
,
J.
, and
Jean
,
Y.
,
2011
, “
Prototype Testing of a Hydrokinetic Turbine Based on Oscillating Hydrofoils
,”
Renewable Energy
,
36
(
6
), pp.
1710
1718
.
8.
Gauthier
,
É.
,
Kinsey
,
T.
, and
Dumas
,
G.
,
2016
, “
Impact of Blockage on the Hydrodynamic Performance of Oscillating-Foils Hydrokinetic Turbines
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091103
.
9.
Delafin
,
P.
,
Nishino
,
T.
,
Wang
,
L.
,
Kolios
,
A.
, and
Bird
,
T.
,
2015
, “
Comparison of RANS CFD and Lower-Order Aerodynamic Models for 3D Vertical Axis Wind Turbines
,”
European Wind Energy Conference and Exhibition
(
EWEA
), Paris, France, Nov. 17–20.https://www.ewea.org/annual2015/conference/submit-an-abstract/pdf/1251193346768.pdf
10.
Gosselin
,
R.
,
Dumas
,
G.
, and
Boudreau
,
M.
,
2013
, “
Parametric Study of H-Darrieus Vertical-Axis Turbines Using URANS Simulations
,”
21st Annual Conference of the CFD Society of Canada
(
CFDSC
), Sherbrooke, QC, Canada, May 6–9, pp. 6–9.http://www.lmfn.ulaval.ca/fileadmin/lmfn/documents/Articles/GosselinDumasBoudreau-CFD2013_reprint.pdf
11.
Beves
,
C. C.
, and
Barber
,
T. J.
,
2016
, “
The Wingtip Vortex of a Dimpled Wing With an Endplate
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021202
.
12.
Mohamed
,
M. H.
,
Ali
,
A. M.
, and
Hafiz
,
A. A.
,
2015
, “
CFD Analysis for H-Rotor Darrieus Turbine as a Low Speed Wind Energy Converter
,”
Eng. Sci. Technol.
,
18
(
1
), pp.
1
13
.
13.
Yamazaki
,
W.
, and
Arakawa
,
Y.
,
2015
, “
Inexpensive Airfoil Shape Optimization for Vertical Axis Wind Turbine and Its Validation
,”
J. Fluid Sci. Technol.
,
10
(
2
), p. JFST0015.
14.
Xiao
,
Q.
,
Liu
,
W.
, and
Incecik
,
A.
,
2013
, “
Flow Control for VATT by Fixed and Oscillating Flap
,”
Renewable Energy
,
51
, pp.
141
152
.
15.
Lim
,
Y. C.
,
Chong
,
W. T.
, and
Hsiao
,
F. B.
,
2013
, “
Performance Investigation and Optimization of a Vertical Axis Wind Turbine With the Omni-Direction-Guide-Vane
,”
Procedia Eng.
,
67
, pp.
59
69
.
16.
Chong
,
W. T.
,
Fazlizan
,
A.
,
Poh
,
S. C.
,
Pan
,
K. C.
,
Hew
,
W. P.
, and
Hsiao
,
F. B.
,
2013
, “
The Design, Simulation and Testing of an Urban Vertical Axis Wind Turbine With the Omni-Direction-Guide-Vane
,”
Appl. Energy
,
112
, pp.
601
609
.
17.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renewable Energy
,
85
, pp.
419
435
.
18.
McNaughton
,
J.
,
Billard
,
F.
, and
Revell
,
A.
,
2014
, “
Turbulence Modelling of Low Reynolds Number Flow Effects Around a Vertical Axis Turbine at a Range of Tip-Speed Ratios
,”
J. Fluids Struct.
,
47
, pp.
124
138
.
19.
Lanzafame
,
R.
,
Mauro
,
S.
, and
Messina
,
M.
,
2014
, “
2D CFD Modeling of H-Darrieus Wind Turbines Using a Transition Turbulence Model
,”
Energy Procedia
,
45
, pp.
131
140
.
20.
Siddiqui
,
M. S.
,
Durrani
,
N.
, and
Akhtar
,
I.
,
2015
, “
Quantification of the Effects of Geometric Approximations on the Performance of a Vertical Axis Wind Turbine
,”
Renewable Energy
,
74
, pp.
661
670
.
21.
Castelli
,
M. R.
,
Monte
,
A. D.
,
Quaresimin
,
M.
, and
Benini
,
E.
,
2013
, “
Numerical Evaluation of Aerodynamic and Inertial Contributions to Darrieus Wind Turbine Blade Deformation
,”
Renewable Energy
,
51
, pp.
101
112
.
22.
Castelli
,
M. R.
,
Englaro
,
A.
, and
Benini
,
E.
,
2011
, “
The Darrieus Wind Turbine: Proposal for a New Performance Prediction Model Based on CFD
,”
Energy
,
36
(
8
), pp.
4919
4934
.
23.
Howell
,
R.
,
Qin
,
N.
,
Edwards
,
J.
, and
Durrani
,
N.
,
2010
, “
Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine
,”
Renewable Energy
,
35
(
2
), pp.
412
422
.
24.
Rossetti
,
A.
, and
Pavesi
,
G.
,
2013
, “
Comparison of Different Numerical Approaches to the Study of the H-Darrieus Turbines Start-Up
,”
Renewable Energy
,
50
, pp.
7
19
.
25.
Ferreira
,
C. J. S.
,
Bijl
,
H.
,
van Bussel
,
G.
, and
van Kuik
,
G.
,
2007
, “
Simulating Dynamic Stall in a 2D VAWT: Modeling Strategy, Verification and Validation With Particle Image Velocimetry Data
,”
J. Phys. Conf. Ser.
,
75
, p.
012023
.
26.
Salim
,
S. M.
, and
Cheah
,
S. C.
,
2009
, “
Wall y+ Strategy for Dealing With Wall-Bounded Turbulent Flows
,”
International MultiConference of Engineers and Computer Scientists
, Hong Kong, China, Mar. 18–20.
27.
Almohammadi
,
K. M.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashan
,
M.
,
2013
, “
Computational Fluid Dynamics (CFD) Mesh Independency Techniques for a Straight Blade Vertical Axis Wind Turbine
,”
Energy
,
58
, pp.
483
493
.
28.
Lee
,
T.
, and
Su
,
Y. Y.
,
2015
, “
Surface Pressures Developed on an Airfoil Undergoing Heaving and Pitching Motion
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051105
.
29.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Presse Internationales Polytechnique
,
Montreal, QC, Canada
.
30.
Zadeh
,
S. N.
,
Komeili
,
M.
, and
Paraschivoiu
,
M.
,
2014
, “
Mesh Convergence Study for 2-D Straight-Blade Vertical Axis Wind Turbine Simulations and Estimation for 3-D Simulations
,”
Can. Soc. Mech. Eng.
,
38
(
4
), pp.
487
504
.http://www.tcsme.org/Papers/Vol38/Vol38No4Paper3.pdf
31.
Naccache
,
G.
,
2016
, “
CFD Based Analysis and Parametric Study of a Novel Wind Turbine Design: The Dual Vertical Axis Wind Turbine
,”
Master' s thesis
, Concordia University, Montreal, QC, Canada.http://spectrum.library.concordia.ca/981601/
32.
Paraschivoiu
,
I.
,
1998
,
Aérodynamique Subsonique
,
École Polytechnique
,
Montreal, QC, Canada
.
33.
Remaki
,
L.
,
Ramezani
,
A.
,
Blanco
,
J. M.
, and
Garcia
,
I.
,
2017
, “
New Simplified Algorithm for the Multiple Rotating Frame Approach in Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081104
.
34.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(3), pp. 405–413.
35.
Timmer
,
W. A.
,
2008
, “
Two-Dimensional Low-Reynolds Number Wind Tunnel Results for Airfoil NACA 0018
,”
Wind Eng.
,
32
(
6
), pp.
525
537
.
36.
Rosenberg
,
A. J.
, and
Sharma
,
A.
,
2017
, “
Inverse Design of a Dual-Rotor Wind Turbine Using a Prescribed Wake Vortex Lattice Method
,”
AIAA
Paper No. 2017-1847.
37.
Lee
,
S.
,
2015
, “
Inverse Design of Horizontal Axis Wind Turbine Blades Using a Vortex Line Method
,”
Wind Energy
,
18
(
2
), pp.
253
266
.
You do not currently have access to this content.