The effects of several surface parameters on equivalent sand roughness (ks) in fully rough regime are investigated by means of direct numerical simulation (DNS) of flow in channels with different wall geometries at Reτ500. The roughness geometry is generated by randomly distributing roughness elements of random size and prescribed shape on a flat surface. The roughness generation approach allows systematic variation of moments of surface height probability density function (PDF), size distribution of roughness peaks, and surface slope. A total number of 38 cases are solved. It is understood that a correlation based on surface height skewness and effective slope (ES) can satisfactorily predict ks normalized with maximum peak-to-valley roughness height within a major part of the studied parameter space. Such a correlation is developed based on the present data points and a number of complementary data points from the literature. It is also shown that the peak size distribution can independently influence the skin friction; at fixed values of rms surface height, skewness, kurtosis, and ES, a surface with uniform size peaks causes higher skin friction compared to one with nonuniform peak sizes. Additionally, it is understood that a roughness generated by regular arrangement of roughness elements may lead to a significantly different skin friction compared to a random arrangement. A staggered and an aligned regular arrangement are examined in this paper and it is observed that the former produces significantly closer results to the corresponding random arrangement.

References

1.
Nikuradse
,
J.
,
1933
, “
Strömungsgesetze in Rauen Rohren
,”
VDI-Forschungsh.
,
361
, pp. 1–22.
2.
Musker
,
A. J.
,
1980
, “
Universal Roughness Functions for Naturally-Occurring Surfaces
,”
Trans. Can. Soc. Mech. Eng.
,
1
, pp.
1
6
.
3.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.
4.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2014
, “
Roughness Effects on Wall-Bounded Turbulent Flows
,”
Phys. Fluids
,
26
(
10
), p.
101305
.
5.
Schlichting
,
H.
,
1936
, “
Experimentelle Untersuchungen zum Rauigkeitsproblem
,”
Ing. Arch.
,
7
(
1
), pp. 1–34.
6.
Jimenez
,
J.
,
2004
, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
173
196
.
7.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
,
28
(
3
), pp.
554
556
.
8.
van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
,
2002
, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
671
677
.
9.
Busse
,
A.
,
Lützner
,
M.
, and
Sandham
,
N. D.
,
2015
, “
Direct Numerical Simulation of Turbulent Flow Over a Rough Surface Based on a Surface Scan
,”
Comput. Fluids
,
116
, pp.
129
147
.
10.
Bons
,
J.
,
2005
, “
A Critical Assessment of Reynolds Analogy for Turbine Flows
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
472
485
.
11.
Yuan
,
J.
, and
Piomelli
,
U.
,
2014
, “
Estimation and Prediction of the Roughness Function on Realistic Surfaces
,”
J. Turbul.
,
15
(
6
), pp.
350
365
.
12.
De Machis
,
M.
,
Milici
,
B.
, and
Napoli
,
E.
,
2015
, “
Numerical Observations of Turbulence Structure Modification in Channel Flow Over 2D and 3D Rough Walls
,”
Int. J. Heat Fluid Flow
,
56
, pp.
108
123
.
13.
Coleman
,
H.
,
Hodge
,
B.
, and
Taylor
,
R.
,
1984
, “
A Re-Evaluation of Schlichting's Surface Roughness Experiment
,”
ASME J. Fluids Eng.
,
106
(
1
), pp.
60
65
.
14.
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2009
, “
Turbulent Boundary Layers on a Systematically Varied Rough Wall
,”
Phys. Fluids
,
21
(
1
), p.
015104
.
15.
Orlandi
,
P.
, and
Leonardi
,
S.
,
2006
, “
DNS of Turbulent Channel Flows With Two- and Three-Dimensional Roughness
,”
J. Turbul.
,
7
(
53
), p.
N73
.
16.
Leonardi
,
S.
, and
Castro
,
I. P.
,
2010
, “
Channel Flow Over Large Cube Roughness: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
651
, pp.
519
539
.
17.
Chan-Braun
,
C.
,
García-Villalba
,
M.
, and
Uhlmann
,
M.
,
2011
, “
Force and Torque Acting on Particles in a Transitionally Rough Open-Channel Flow
,”
J. Fluid Mech.
,
684
, pp.
441
474
.
18.
Chan
,
L.
,
MacDonald
,
M.
,
Chung
,
D.
,
Hutchins
,
N.
, and
Ooi
,
A.
,
2015
, “
A Systematic Investigation of Roughness Height and Wavelength in Turbulent Pipe Flow in the Transitionally Rough Regime
,”
J. Fluid Mech.
,
771
, pp.
743
777
.
19.
Chevalier
,
M.
,
Schlatter
,
P.
,
Lundbladh
,
A.
, and
Henningson
,
D. S.
,
2007
, “
SIMSON—A Pseudo-Spectral Solver for Incompressible Boundary Layer Flow
,” KTH Mechanics, Stockholm, Sweden, Technical Report No.
TRITA-MEK 2007:7
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A501008&dswid=-9250#sthash.j3hYmxMr.dpbs.
20.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1993
, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
,
105
(
2
), pp.
354
366
.
21.
Squire
,
D.
,
Morrill-Winter
,
C.
,
Hutchins
,
N.
,
Schultz
,
M.
,
Klewicki
,
J.
, and
Marusic
,
I.
,
2016
, “
Comparison of Turbulent Boundary Layers Over Smooth and Rough Surfaces up to High Reynolds Numbers
,”
J. Fluid Mech.
,
795
, pp.
210
240
.
22.
Thakkar
,
M.
,
Busse
,
A.
, and
Sandham
,
N.
,
2017
, “
Surface Correlations of Hydrodynamic Drag for Transitionally Rough Engineering Surfaces
,”
J. Turbul.
,
18
(
2
), pp.
138
169
.
23.
Bons
,
J. P.
,
2002
, “
ST and CF Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
.
24.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
25.
Napoli
,
E.
,
Armenio
,
V.
, and
De Marchis
,
M.
,
2008
, “
The Effect of the Slope of Irregularly Distributed Roughness Elements on Turbulent Wall-Bounded Flows
,”
J. Fluid Mech.
,
613
, pp.
385
394
.
You do not currently have access to this content.