A general hydraulic loss coefficient correlation for perpendicular, cylindrical, finite length dividing pipe junctions is developed and implemented in a discrete dividing-flow manifold model. Dividing-flow manifolds are used in several technical appliances, e.g., in water and wastewater treatment, swimming pool technology, air engineering, and polymer processing. Ensuring uniform flow distribution is a major goal of a flow manifold system design, whose accuracy is usually determined by the accuracies of applied flow coefficients. Coefficient of turning losses is calculated by a computational fluid dynamics (CFD)-based approach applying a nonlinear fit. In the case of a single-phase flow, the loss coefficient depends on four dimensionless parameters: the Reynolds number, the ratio of port and header flow velocities, the diameter ratio, and the ratio of the port length and the diameter of the pipe. Instead of experimentally covering this four-dimensional parameter space, more than 1000 judiciously chosen three-dimensional simulations were run to determine the loss coefficient for the parameter range most used in engineering practice. Validated results of our novel resistance formula show that the velocity and port length to header diameter ratios have a significant effect on the turning loss coefficient, while the diameter ratio and Reynolds number dependency are weaker in the investigated parameter ranges.

References

1.
Liseth
,
P.
,
1976
, “
Wastewater Disposal by Submerged Manifolds
,”
ASCE J. Hydraul. Div.
,
102
(
1
), pp.
1
14
.
2.
Matsubara
,
Y.
,
1979
, “
Geometry Design of a Coat-Hanger Die With Uniform Flow Rate and Residence Time Across the Die Width
,”
Polym. Eng. Sci.
,
19
(
3
), pp.
169
172
.
3.
Holmes
,
J. D.
, and
Lewis
,
R. E.
,
1987
, “
Optimization of Dynamic-Pressure-Measurement Systems. II. Parallel Tube-Manifold Systems
,”
J. Wind Eng. Ind. Aerodyn.
,
25
(
3
), pp.
275
290
.
4.
Bassiouny
,
M. K.
, and
Martin
,
H.
,
1984
, “
Flow Distribution and Pressure Drop in Plate Heat Exchangers–I U-Type Arrangement
,”
Chem. Eng. Sci.
,
39
(
4
), pp.
693
700
.
5.
Wang
,
J.
,
2008
, “
Pressure Drop and Flow Distribution in Parallel-Channel Configurations of Fuel Cells: U-Type Arrangement
,”
Int. J. Hydrogen Energy
,
33
(
21
), pp.
6339
6350
.
6.
Wang
,
J.
,
2010
, “
Pressure Drop and Flow Distribution in Parallel-Channel Configurations of Fuel Cells: Z-Type Arrangement
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5498
5509
.
7.
Wang
,
J.
,
Gao
,
Z.
,
Gan
,
G.
, and
Wu
,
D.
,
2001
, “
Analytical Solution of Flow Coefficients for a Uniformly Distributed Porous Channel
,”
Chem. Eng. J.
,
84
(
1
), pp.
1
6
.
8.
Hassan
,
J. M.
,
Mohammed
,
W. S.
,
Mohamed
,
T. A.
, and
Alawee
,
W. H.
,
2014
, “
Review on Single-Phase Fluid Flow Distribution in Manifold
,”
Int. J. Sci. Res. (IJSR)
,
3
(
1
), pp.
325
330
.
9.
Wang
,
J.
,
2011
, “
Flow Distribution and Pressure Drop in Different Layout Configurations With Z-Type Arrangement
,”
Energy Sci. Technol.
,
2
(
2
), pp.
1
12
.
10.
Wang
,
J.
,
2013
, “
Design Method of Flow Distribution in Nuclear Reactor Systems
,”
Chem. Eng. Res. Des.
,
91
(
4
), pp.
595
602
.
11.
Datta
,
A. B.
, and
Majumdar
,
A. K.
,
1980
, “
Flow Distribution in Parallel and Reverse Flow Manifolds
,”
Int. J. Heat Fluid Flow
,
2
(
4
), pp.
253
262
.
12.
López
,
R.
,
Lecuona
,
A.
,
Ventas
,
R.
, and
Vereda
,
C.
,
2012
, “
A Numerical Procedure for Flow Distribution and Pressure Drops for U and Z Type Configurations Plate Heat Exchangers With Variable Coefficients
,”
J. Phys.: Conf. Ser.
,
395
(
1
), p.
012060
.
13.
Wang
,
J.
, and
Wang
,
H.
,
2015
, “
Discrete Method for Design of Flow Distribution in Manifolds
,”
Appl. Therm. Eng.
,
89
(
1
), pp.
927
945
.
14.
Hassan
,
J. M.
,
AbdulRazzaq
,
A.
, and
Kamil
,
B. K.
,
2008
, “
Flow Distribution in Manifolds
,”
J. Eng. Dev.
,
12
(
4
), pp.
159
177
.
15.
Hassan
,
J. M.
,
Mohammed
,
W. S.
, and
Hameed
,
A. F.
,
2012
, “
Study of Three Dimensional Fluid Flow in Manifold-Laterals System
,”
Eng. Technol. J.
,
30
(
7
), pp.
1132
1148
.
16.
Heggemann
,
M.
,
Hirschberg
,
S.
,
Spiegel
,
L.
, and
Bachmann
,
C.
,
2007
, “
CFD Simulation and Experimental Validation of Fluid Flow in Liquid Distributors
,”
Chem. Eng. Res. Des.
,
85
(
1
), pp.
59
64
.
17.
Tonomura
,
O.
,
Tanaka
,
S.
,
Noda
,
M.
,
Kano
,
M.
,
Hasebe
,
S.
, and
Hashimoto
,
I.
,
2004
, “
CFD-Based Optimal Design of Manifold in Plate-Fin Microdevices
,”
Chem. Eng. J.
,
101
(
1–3
), pp.
397
402
.
18.
Chen
,
A.
, and
Sparrow
,
E. M.
,
2009
, “
Turbulence Modeling for Flow in a Distribution Manifold
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1573
1581
.
19.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
,
2001
, “
Simulation of Fully Developed Laminar Heat and Mass Transfer in Fuel Cell Ducts With Different Cross-Sections
,”
Int. J. Heat Mass Transfer
,
44
(
21
), pp.
4047
4058
.
20.
Kulkarni
,
A. V.
,
Roy
,
S. S.
, and
Joshi
,
J. B.
,
2007
, “
Pressure and Flow Distribution in Pipe and Ring Spargers: Experimental Measurements and CFD Simulation
,”
Chem. Eng. J.
,
133
(
1–3
), pp.
173
186
.
21.
Kapadia
,
S.
, and
Anderson
,
W. K.
,
2009
, “
Sensitivity Analysis for Solid Oxide Fuel Cells Using a Three-Dimensional Numerical Model
,”
J. Power Sources
,
189
(
2
), pp.
1074
1082
.
22.
Gandhi
,
M. S.
,
Ganguli
,
A. A.
,
Joshi
,
J. B.
, and
Vijayan
,
P. K.
,
2012
, “
CFD Simulation for Steam Distribution in Header and Tube Assemblies
,”
Chem. Eng. Res. Des.
,
90
(
4
), pp.
487
506
.
23.
Miller
,
D. S.
,
1990
,
Internal Flow Systems
, 2nd ed.,
BHRA (Information Services)
,
Cranfield, Bedford, UK
, pp.
87
95
.
24.
Idelchik
,
I. E.
,
2008
,
Handbook of Hydraulic Resistance
, 3rd ed.,
Jaico Publishing House
,
Mumbai, India
, pp.
413
451
.
25.
Kubo
,
T.
, and
Ueda
,
T.
,
1969
, “
On the Characteristics of Divided Flow and Confluent Flow in Headers
,”
Bull. JSME
,
12
(
52
), pp.
802
809
.
26.
Wang
,
J.
,
2011
, “
Theory of Flow Distribution in Manifolds
,”
Chem. Eng. J.
,
168
(
3
), pp.
1331
1345
.
27.
Liu
,
W.
,
Long
,
Z.
, and
Chen
,
Q.
,
2012
, “
A Procedure for Predicting Pressure Loss Coefficients of Duct Fittings Using Computational Fluid Dynamics (RP-1493)
,”
HVACR Res.
,
18
(
6
), pp.
1168
1181
.
28.
Badar
,
A. W.
,
Buchholz
,
R.
,
Lou
,
Y.
, and
Ziegler
,
F.
,
2012
, “
CFD Based Analysis of Flow Distribution in a Coaxial Vacuum Tube Solar Collector With Laminar Flow Conditions
,”
Int. J. Energy Environ. Eng.
,
3
(
1
), p.
24
.
29.
Ramamurthy
,
A. S.
,
Qu
,
J.
,
Vo
,
D.
, and
Zhai
,
C.
,
2006
, “
3-D Simulation of Dividing Flows in 90 Deg Rectangular Closed Conduits
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1126
1129
.
30.
Acrivos
,
A.
,
Babcock
,
B. D.
, and
Pigford
,
R. L.
,
1958
, “
Flow Distributions in Manifolds
,”
Chem. Eng. Sci.
,
10
(
1–2
), pp.
112
124
.
31.
Bajura
,
R. A.
, and
Jones
,
E. H.
,
1976
, “
Flow Distribution Manifolds
,”
ASME J. Fluids Eng.
,
98
(
4
), pp.
654
665
.
32.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
33.
Tomor
,
A.
, and
Kristóf
,
G.
,
2016
, “
Validation of a Discrete Model for Flow Distribution in Dividing-Flow Manifolds: Numerical and Experimental Studies
,”
Period. Polytech., Mech. Eng.
,
60
(
1
), pp.
41
49
.
34.
Celik
, I
. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
35.
Pigford
,
R. L.
,
Ashraf
,
M.
, and
Miron
,
Y. D.
,
1983
, “
Flow Distribution in Piping Manifolds
,”
Ind. Eng. Chem. Fundam.
,
22
(
4
), pp.
463
471
.
36.
Costa
,
N. P.
,
Maia
,
R.
,
Proença
,
M. F.
, and
Pinho
,
F. T.
,
2006
, “
Edge Effects on the Flow Characteristics in a 90 Deg Tee Junction
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1204
1217
.
37.
Bajura
,
R. A.
,
1971
, “
A Model for Flow Distribution in Manifolds
,”
ASME J. Eng. Power
,
93
(
1
), pp.
7
12
.
38.
Majumdar
,
A. K.
,
1980
, “
Mathematical Modelling of Flows in Dividing and Combining Flow Manifold
,”
Appl. Math. Modell.
,
4
(
6
), pp.
424
432
.
39.
Wang
,
J.
, and
Wang
,
H.
,
2012
, “
Discrete Approach for Flow Field Designs of Parallel Channel Configurations in Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
14
), pp.
10881
10897
.
You do not currently have access to this content.