Shock-induced mixing experiments have been conducted in a vertical shock tube of 130 mm square cross section located at ISAE. A shock wave traveling at Mach 1.2 in air hits a geometrically disturbed interface separating air and SF6, a gas five times heavier than air, filling a chamber of length L up to the end of the shock tube. Both gases are initially separated by a 0.5 μm thick nitrocellulose membrane maintained parallel to the shock front by two wire grids: an upper one with mesh spacing equal to either ms = 1.8 mm or 12.1 mm, and a lower one with a mesh spacing equal to ml = 1 mm. Weak dependence of the mixing zone growth after reshock (interaction of the mixing zone with the shock wave reflected from the top end of the test chamber) with respect to L and ms is observed despite a clear imprint of the mesh spacing ms in the schlieren images. Numerical simulations representative of these configurations are conducted: the simulations successfully replicate the experimentally observed weak dependence on L, but are unable to show the experimentally observed independence with respect to ms while matching the morphological features of the schlieren pictures.

References

1.
Dimotakis
,
P. E.
,
2000
, “
The Mixing Transition in Turbulent Flows
,”
J. Fluid Mech.
,
409
(
4
), pp.
69
98
.
2.
Grégoire
,
O.
,
Souffland
,
D.
, and
Gauthier
,
S.
,
2005
, “
A Second-Order Turbulence Model for Gaseous Mixtures Induced by Richtmyer–Meshkov Instability
,”
J. Turbul.
,
6
(
29
), pp.
1
20
.
3.
Souffland
,
D.
,
Soulard
,
O.
, and
Griffond
,
J.
,
2014
, “
Modeling of Reynolds Stress Models for Diffusion Fluxes Inside Shock Waves
,”
ASME J. Fluids Eng.
,
136
(
9
), p.
091102
.
4.
Thornber
,
B.
,
Drikakis
,
D.
,
Youngs
,
D. L.
, and
Williams
,
R. J. R.
,
2010
, “
The Influence of Initial Conditions on Turbulent Mixing Due to Richtmyer–Meshkov Instability
,”
J. Fluid Mech.
,
654
, pp.
99
139
.
5.
Vetter
,
M.
, and
Sturtevant
,
B.
,
1995
, “
Experiments on the Richtmyer–Meshkov Instability of an Air/SF6 Interface
,”
Shock Waves
,
4
(
5
), pp. 247–252.
6.
Poggi
,
F.
,
Thorembey
,
M.-H.
, and
Rodriguez
,
G.
,
1998
, “
Velocity Measurements in Turbulent Gaseous Mixtures Induced by Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
10
(
11
), pp.
2698
2700
.
7.
Bouzgarrou
,
G.
,
Bury
,
Y.
,
Jamme
,
S.
,
Joly
,
L.
, and
Haas
,
J.-F.
,
2013
, “
Experimental Determination of the Growth Rate of Richtmyer–Meshkov Induced Turbulent Mixing After Reshock
,”
29th International Symposium on Shock Waves
(
ISSW29
), Madison, WI, July 14–19, pp. 1083–1088.
8.
Bouzgarrou
,
G.
,
2014
, “
Analyse d'un mélange gazeux issu d'une instabilité de Richtmyer–Meshkov
,” Ph.D. thesis, Université de Toulouse, Toulouse, France.
9.
Bouzgarrou
,
G.
,
Bury
,
Y.
,
Jamme
,
S.
,
Joly
,
L.
, and
Haas
,
J.-F.
,
2014
, “
Laser Doppler Velocimetry Measurements in Turbulent Gaseous Mixing Induced by Richtmyer–Meshkov Instability: Statistical Convergence Issues and Turbulence Quantification
,”
ASME J. Fluids Eng.
,
136
(
9
), p.
091209
.
10.
Mikaelian
,
K. O.
,
1989
, “
Turbulent Mixing Generated by Rayleigh–Taylor and Richtmyer–Meshkov Instabilities
,”
Physica D
,
36
(
3
), pp.
343
357
.
11.
Thornber
,
B.
,
Drikakis
,
D.
,
Youngs
,
D.
, and
Williams
,
R.
,
2011
, “
Growth of a Richtmyer–Meshkov Turbulent Layer After Reshock
,”
Phys. Fluids
,
23
(
9
), p.
095107
.
12.
Leinov
,
E.
,
Malamud
,
G.
,
Elbaz
,
Y.
,
Levin
,
L.
,
Ben-Dor
,
G.
,
Sharts
,
D.
, and
Sadot
,
O.
,
2009
, “
Experimental and Numerical Investigation of the Richtmyer–Meshkov Instability Under Re-Shock Conditions
,”
J. Fluid Mech.
,
626
, pp.
449
475
.
13.
Jacobs
,
J.
,
Krivets
,
V.
,
Tsiklashvili
,
V.
, and
Likhachev
,
O.
,
2013
, “
Experiments on the Richtmyer–Meshkov Instability With an Imposed, Random Initial Perturbation
,”
Shock Waves
,
23
(
4
), pp.
407
413
.
14.
Mügler
,
C.
, and
Gauthier
,
S.
,
2000
, “
Two-Dimensional Navier–Stokes Simulations of Gaseous Mixtures Induced by Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
12
(
7
), pp.
1783
1798
.
15.
Schilling
,
O.
, and
Latini
,
M.
,
2010
, “
High-Order WENO Simulations of Three-Dimensional Reshocked Richtmyer–Meshkov Instability to Late Times: Dynamics, Dependence on Initial Conditions, and Comparisons to Experimental Data
,”
Acta Math. Sci.
,
30
(
2
), pp.
595
620
.
16.
Shanmuganathan
,
S.
,
Youngs
,
D. L.
,
Griffond
,
J.
,
Thornber
,
B.
, and
Williams
,
R. J. R.
,
2014
, “
Accuracy of High-Order Density-Based Compressible Methods in Low Mach Vortical Flows
,”
Int. J. Numer. Methods Fluids
,
74
(
5
), pp.
335
358
.
17.
LeVeque
,
R. J.
,
2002
,
Finite Volume Method for Hyperbolic Problems
(Cambridge Texts in Applied Mathematics), Vol.
31
,
Cambridge University Press
,
New York
.
18.
Daru
,
V.
, and
Tenaud
,
C.
,
2004
, “
High Order One-Step Monotonicity-Preserving Schemes for Unsteady Compressible Flow Calculations
,”
J. Comput. Phys.
,
193
(
2
), pp.
563
594
.
19.
Llor
,
A.
,
2005
,
Statistical Hydrodynamic Models for Developed Mixing Instability Flows
, 1st ed., Vol.
681
,
Springer-Verlag
,
Berlin
.
20.
Wouchuk
,
J. G.
, and
Nishihara
,
K.
,
1997
, “
Asymptotic Growth in the Linear Richtmyer–Meshkov Instability
,”
Phys. Plasmas
,
4
(
4
), pp.
1028
1038
.
21.
Cohen
,
R.
,
Dannevik
,
W.
,
Dimits
,
A.
,
Eliason
,
D.
,
Mirin
,
A.
, and
Zhou
,
Y.
,
2002
, “
Three-Dimensional Simulation of a Richtmyer–Meshkov Instability With a Two-Scale Initial Perturbation
,”
Phys. Fluids
,
14
(
10
), pp.
3692
3709
.
22.
Vandenboomgaerde
,
M.
,
Souffland
,
D.
,
Mariani
,
C.
,
Biamino
,
L.
,
Jourdan
,
G.
, and
Houas
,
L.
,
2014
, “
An Experimental and Numerical Investigation of the Dependency on the Initial Conditions of the Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
26
(
2
), p.
024109
.
23.
Yates
,
L.
,
1993
, “
Images Constructed From Computed Flowfields
,”
AIAA J.
,
31
(
10
), pp.
1877
1884
.
24.
Dimonte
,
G.
,
Frerking
,
C. E.
, and
Schneider
,
M.
,
1995
, “
Richtmyer–Meshkov Instability in the Turbulent Regime
,”
Phys. Rev. Lett.
,
74
(
24
), pp.
4855
4858
.
You do not currently have access to this content.