Pressure-equalizing film is a slice of air layer attached to vehicle exterior with nearly uniform inside pressure, similar to ventilated cavity in composition; it is generated through exhaust process of the inside air chamber as vehicle emerges from deep water, and can reduce the lateral force and pitching moment that vertical launched underwater vehicle suffered. In this work, the emerging process of vehicle from water with pressure-equalizing exhaust was numerically calculated to investigate the evolution and flow characteristics of the generated pressure-equalizing film along its surface. Results indicated that during the whole exhaust process, the film can be obviously classified into different sections according to the distribution of phase volume fraction or pressure. The exhaust velocity ratio and flow rate from vehicle interior chamber were also found to increase as vehicle moves. In the analysis of flow structures, vortex structures such as the horseshoe vortex, “detour-separation” vortex, and counter-rotating vortex pair (CVP) can be figured out in the region of the exhaust hole. Under the effect of re-entrant jet, water around the film tail would be entrained upstream then enter the surface film to mix with the pressure-equalizing air. It leads to the happening of the three-dimensional (3D) wall vortex in the flow field.

References

1.
Wang
,
Z. Y.
,
Cheng
,
S. H.
,
Yu
,
H. T.
,
Wang
,
G. J.
, and
Pei
,
J. L.
,
2016
, “
Stability Studies of Trajectory of Launched Vehicles Under Deep Water
,”
Ordnance Ind. Autom.
,
35
(
6
), pp.
1
5
.
2.
Bao
,
W. C.
,
Quan
,
X. B.
, and
Wei
,
H. P.
,
2014
, “
Numerical Simulation on the Flow Dynamics of Underwater Vehicle Launching With Exhaust
,”
Missiles Space Veh.
, (
5
), pp.
14
18
.
3.
Qiu
,
Y.
,
2013
, “Numerical Simulation Research on the Influence of Cavity Exhaust to the Process of Vehicle Underwater Launch,” M.S. thesis, Harbin Institute of Technology, Harbin, HL.
4.
Savchenko
,
Y. N.
,
2001
, “
Modeling the Supercavitation Processes
,”
Int. J. Fluid Mech. Res.
,
28
(
5
), pp.
644
659
.
5.
Cao
,
J. Y.
,
Lu
,
C. J.
,
Li
,
J.
, and
Wu
,
L.
,
2006
, “
Research on the Vertical Launching of Direct Igniting Underwater Missile
,”
J. Hydrodyn. (Ser. A)
,
21
(
6
), pp.
752
759
.
6.
Kuklinski
,
R. T.
,
Henoch
,
C.
, and
Castano
,
J.
,
2001
, “
Experimental Study of Ventilated Cavities on Dynamic Test Model
,”
Fourth International Symposium on Cavitation
(CAV), Pasadena, CA, June 20-23, Paper No.
004
.http://caltechconf.library.caltech.edu/59/
7.
Zhang
,
J. H.
,
Zhang
,
Y. W.
, and
Li
,
Y. T.
,
2011
, “
Experimental Study of Ventilation Supercavitation Generation and Maintenance Produced by Underwater Vehicle
,”
J. Exp. Mech.
,
26
(
6
), pp.
715
720
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYLX201106013.htm
8.
Guo
,
J. H.
, and
Lu
,
C. J.
,
2010
, “
Pulsation Characteristics of Ventilated Supercavitation on a 2D Hydrofoil
,”
J. Shanghai Jiaotong Univ.
,
15
(
4
), pp.
423
427
.
9.
Zhang
,
X. S.
, and
Wang
,
C.
,
2005
, “
Research on Underwater Vehicle Based on Multiphase Flow Control
,” International Conference on Energy, Materials and Manufacturing Engineering (EMME), Kuala Lumpur, Malaysia, Oct. 15-16, Paper No.
03004
, pp.
1
5
.
10.
Rabiee
,
A.
,
Alishahi
,
M. M.
,
Emdad
,
H.
, and
Saranjam
,
B.
,
2011
, “
PART A: Experimental Investigation of Unsteady Supercavitating Flows
,”
Iranian J. Sci. Technol.
,
35
(
1
), pp.
15
29
.https://search.proquest.com/openview/236303ff072d657c01fdc9338befea24/1?pq-origsite=gscholar&cbl=2026719
11.
Yi
,
S. Q.
,
Zhang
,
M. H.
,
Zhou
,
J. W.
,
Xu
,
M. M.
,
Song
,
Z. P.
, and
Shen
,
J. R.
,
2010
, “
Experimental Research About the Effects of Attack Angle on Supercavitation of Restrained Model During Axial Accelerating
,”
Chin. J. Hydrodyn. Ser. A
,
25
(
3
), pp.
292
298
.
12.
Tang
,
J. B.
, and
Zhong
,
C. W.
,
2005
, “
Numerical Simulation of the Cavitating, Supercavitaing Flow Based on Navier-Stokes Equations
,”
Chin. J. Theor. Appl. Mech.
,
37
(
5
), pp.
640
644
.http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXXB200505016.htm
13.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(4), pp.
788
794
.
14.
Self
,
M. W.
, and
Ripken
,
J. F.
,
1995
, “Steady-State Cavity Studies in a Free-Jet Water Tunnel,” St. Anthony Falls Hydraulic Laboratory, University of Minnesota, Minneapolis, MN, Report No.
47
.https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjbk9SYwcLXAhVBQCYKHSqnAbkQFgglMAA&url=https%3A%2F%2Fconservancy.umn.edu%2Fbitstream%2Fhandle%2F11299%2F108489%2F1%2Fpr047.pdf&usg=AOvVaw0gAw_ukyHLnCk0NYAwS9OE
15.
Laberteaux
,
K. R.
, and
Ceccio
,
S. L.
,
1998
, “
Flow in the Closure Region of Closed Partial Attached Cavitation
,”
Third International Symposium on Cavitation
, Grenoble, France, Apr. 7–10, pp.
197
202
.https://deepblue.lib.umich.edu/handle/2027.42/131460
16.
Zhang
,
J. Z.
,
Zhao
,
J.
,
Wei
,
Y. J.
,
Wang
,
C.
, and
Yu
,
K. P.
,
2012
, “
Re-Entrant Jet and Its Effect on the Shape of Ventilated Supercavity
,”
J. Ship Mech.
,
26
(
2
), pp.
56
59
.
17.
Ausoni
,
P.
,
Farhat
,
M.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Avellan
,
F.
,
2007
, “
Cavitation Influence on Von Kármán Vortex Shedding and Induced Hydrofoil Vibrations
,”
ASME J. Fluids Eng.
,
129
(8), pp.
966
973
.
18.
New
,
T. H.
,
Lim
,
T. T.
, and
Luo
,
S. C.
,
2003
, “
Elliptic Jets Cross-Flow
,”
J. Fluid Mech.
,
494
, pp.
119
140
.
19.
Barata
,
J. M.
, and
Durao
,
D. F. G.
,
2004
, “
Laser-Doppler Measurements of Impinging Jet Flows Through a Crossflow
,”
Exp. Fluids
,
36
(5), pp.
665
674
.
20.
Sau
,
A.
,
Sheu
,
T. W. H.
,
Hwang
,
R. R.
, and
Yang
,
W. C.
,
2004
, “
Three-Dimensional simulation of Square Jets in Cross-Flow
,”
Phys. Rev. E
,
69
, p. 066302.
21.
Jiang
,
G. Q.
,
Ren
,
X. W.
, and
Li
,
W.
,
2010
, “
Numerical Simulation of Vorticity Dynamics for Turbulent Jet in Crossflow
,”
Adv. Water Sci.
,
21
(
3
), pp.
307
314
.
22.
Kelso
,
K. R.
, and
Smits
,
A. J.
,
1995
, “
Horseshoe Vortex Systems Resulting From the Interaction Between a Laminar Boundary Layer and a Transverse Jet
,”
Phys. Fluids
,
7
(
1
), pp.
153
158
.
23.
Zhang
,
Y.
,
2005
, “Experimental and Numerical Investigations on the Vortical Structures of an Impinging Jet in Crossflow,” Ph.D. thesis, Shanghai University, Shanghai.
24.
Maurel
,
S.
, and
Sollied
,
C.
,
2001
, “
A Turbulent Plane Jet Impinging Nearby and Far From a Flat Plate
,”
Exp. Fluids
,
31
(
6
), pp.
687
696
.
25.
Xiang
,
M.
,
2011
, “
Numerical Research on Ventilated Cavitating Flow for the Supercavitating Veh
icles,” Ph.D. thesis, National University of Defense Technology, Changsha, HN.
26.
Qin
,
Y.
,
2014
, “Effect of Gas Exhausting on Hydrodynamic Characteristic of Underwater Vehicle Considering Wave,” M.S. thesis, Harbin Institute of Technology, Harbin, HL.
27.
Chen
,
F.
,
Ma
,
G. H.
,
Bao
,
W. C.
, and
Jiang
,
S.
,
2016
, “
Effect of Straight or Inclined Hole Exhaust on Flow Around Underwater Vehicle—Part 2: Hydrodynamic Characteristics
,”
J. Eng. Thermophys.
,
37
(
9
), pp.
1845
1849
.
28.
Sakai
,
E.
,
Takahashi
,
T.
, and
Watanabe
,
H.
,
2014
, “
Large-Eddy Simulation of an Inclined Round Jet Issuing Into a Crossflow
,”
Int. J. Heat Mass Transfer
,
69
, pp.
300
311
.
29.
Brandner
,
P. A.
,
Pearce
,
B. W.
, and
Graaf
,
K. L. D.
,
2015
, “
Cavitation About a Jet in Crossflow
,”
J. Fluid Mech.
,
768
, pp.
141
174
.
You do not currently have access to this content.