When an axial flow enters a rotating diffuser or nozzle, a swirl boundary layer appears at the wall and interacts with the axial boundary layer. Below a critical flow number φc, there is a flow separation, known in the turbomachinery context as part load recirculation. This paper extends the previous work for a cylindrical coaxial rotating pipe still considering the influence of the centrifugal force by varying the pipe's radius, yielding a coaxial rotating circular diffuser or nozzle. The integral method of boundary layer theory is used to describe the flow at the inlet of a rotating circular diffuser or nozzle, obtaining a generalized von Kármán momentum equation. This work conducts experiments to validate the analytical results and shows the influence of Reynolds number, flow number, apex angle, and surface roughness on the boundary layers evolution. By doing so, a critical flow number for incipient flow separation is analytically derived, resulting in a stability map for part load recirculation depending on Reynolds number and apex angle. Hereby, positive apex angles (diffuser) and negative apex angles (nozzle) are considered.

References

1.
Stel
,
H.
,
Amaral
,
G. D. L.
,
Negrão
,
C. O. R.
,
Chiva
,
S.
,
Estevam
,
V.
, and
Morales
,
R. E. M.
,
2013
, “
Numerical Analysis of the Fluid Flow in the First Stage of a Two-Stage Centrifugal Pump With a Vaned Diffuser
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071104
.
2.
Westra
,
R.
,
Broersma
,
L.
,
van Andeland
,
N. P.
, and
Kruyt
,
K.
,
2010
, “
PIV Measurements and CFD Computations of Secondary Flow in a Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061104
.
3.
Oro
,
J.
,
Ballesteros-Tajadura
,
R.
,
Marigorta
,
E.
,
Díaz
,
K.
, and
Morros
,
C.
,
2008
, “
Turbulence and Secondary Flows in an Axial Flow Fan With Variable Pitch Blades
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
041101
.
4.
Jang
,
C.-M.
,
Sato
,
D.
, and
Fukano
,
T.
,
2005
, “
Experimental Analysis on Tip Leakage and Wake Flow in an Axial Flow Fan According to Flow Rates
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
322
329
.
5.
Horlock
,
J.
,
Louis
,
J.
,
Percival
,
P.
, and
Lakshminarayana
,
B.
,
1966
, “
Wall Stall in Compressor Cascades
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
637
648
.
6.
Pelz
,
P.
, and
Taubert
,
P.
,
2018
, “
Vortex Induced Transient Stall
,” Arch. Appl. Mech.,
2017
, pp. 1–6.
7.
Pelz
,
P.
,
Taubert
,
P.
, and
Cloos
,
F.-J.
,
2017
, “
Vortex Structure and Kinematics of Encased Axial Turbomachines
,”
17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC)
, Maui, HI, Feb. 17–22.
8.
Cloos
,
F.-J.
,
Stapp
,
D.
, and
Pelz
,
P.
,
2017
, “
Swirl Boundary Layer and Flow Separation at the Inlet of a Rotating Pipe
,”
J. Fluid Mech.
,
811
, pp.
350
371
.
9.
Cloos
,
F.-J.
, and
Pelz
,
P.
,
2018
, “
Experimental Investigation of the Swirl Development at the Inlet of a Coaxial Rotating Diffuser or Nozzle
,”
ASME J. Fluids Eng.
, (epub).
10.
Cloos
,
F.-J.
, and
Pelz
,
P.
,
2017
, “
Swirl Boundary Layer at the Inlet of a Rotating Circular Cone
,”
17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC)
, Maui, HI, Feb. 9–11.
11.
Schlichting
,
H.
, and
Gersten
,
K.
,
1961
, “
Berechnung Der Strömung in Rotationssymmetrischen Diffusoren Mit Hilfe Der Grenzschichttheorie
,”
Z. Flugwiss
,
9
(
4/5
), pp.
136
140
.
12.
Kármán
,
T. V.
,
1921
, “
Über Laminare Und Turbulente Reibung
,”
ZAMM
,
1
(
4
), pp.
233
252
.
13.
Pohlhausen
,
K.
,
1921
, “
Zur Näherungsweisen Integration Der Differentialgleichung Der Laminaren Grenzschicht
,”
ZAMM
,
1
(
4
), pp.
252
268
.
14.
Stratford
,
B.
,
1959
, “
The Prediction of Separation of the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
5
(
1
), pp.
1
16
.
15.
Nishibori
,
K.
,
Kikuyama
,
K.
, and
Murakami
,
M.
,
1987
, “
Laminarization of Turbulent Flow in the Inlet Region of an Axially Rotating Pipe
,”
Bull. JSME
,
30
, pp.
255
262
. https://www.jstage.jst.go.jp/article/jsme1987/30/260/30_260_255/_pdf
16.
Kikuyama
,
K.
,
Murakami
,
M.
,
Nishibori
,
K.
, and
Maeda
,
K.
,
1983
, “
Flow in an Axially Rotating Pipe—A Calculation of Flow in the Saturated Region
,”
Bull. JSME
,
26
(
214
), pp.
506
513
.
17.
Weigand
,
B.
, and
Beer
,
H.
,
1994
, “
On the Universality of the Velocity Profiles of a Turbulent Flow in an Axially Rotating Pipe
,”
Appl. Sci. Res.
,
52
(
2
), pp.
115
132
.
18.
Imao
,
S.
,
Itohi
,
M.
, and
Harada
,
T.
,
1996
, “
Turbulent Characteristics of the Flow in an Axially Rotating Pipe
,”
Int. J. Heat Fluid Flow
,
17
(
5
), pp.
444
451
.
19.
Weigand
,
B.
, and
Beer
,
H.
,
1992
, “
Fluid Flow and Heat Transfer in an Axially Rotating Pipe: The Rotational Entrance
,”
Third International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC)
, pp.
325
340
.
20.
Murakami
,
M.
, and
Kikuyama
,
K.
,
1980
, “
Turbulent Flow in Axially Rotating Pipes
,”
ASME J. Fluids Eng.
,
102
(
1
), pp.
97
103
.
21.
Kikuyama
,
K.
,
Murakami
,
M.
, and
Nishibori
,
K.
,
1983
, “
Development of Three-Dimensional Turbulent Boundary Layer in an Axially Rotating Pipe
,”
ASME J. Fluids Eng.
,
105
(
2
), pp.
154
160
.
22.
Reich
,
G.
,
1988
, “
Strömung Und Wärmeübertragung in Einem Axial Rotierenden Rohr
,” Ph.D. thesis, Technische Hochschule Darmstadt, Darmstadt, Germany.
23.
Oberlack
,
M.
,
1999
, “
Similarity in Non-Rotating and Rotating Turbulent Pipe Flows
,”
J. Fluid Mech.
,
379
, pp.
1
22
.
24.
Stapp
,
D.
,
2015
,
Experimentelle Und Analytische Untersuchung Zur Drallgrenzschicht
,
Forschungsberichte Zur Fluidsystemtechnik, Technische Universität Darmstadt
,
Darmstadt, Germany
.
25.
Lavan
,
Z.
,
Nielsen
,
H.
, and
Fejer
,
A.
,
1969
, “
Separation and Flow Reversal in Swirling Flows in Circular Ducts
,”
Phys. Fluids
,
12
(
9
), pp.
1747
1757
.
26.
Imao
,
S.
,
Zhang
,
Q.
, and
Yamada
,
Y.
,
1989
, “
The Laminar Flow in the Developing Region of a Rotating Pipe
,”
Bull. JSME
,
32
, pp.
317
323
.
27.
Crane
,
C.
, and
Burley
,
D.
,
1976
, “
Numerical Studies of Laminar Flow in Ducts and Pipes
,”
J. Comp. Appl. Math., 2
(
2
), pp.
95
111
.
28.
Jungnitz
,
G.
,
1949
, “
Rechnerische Untersuchung Von Diffusoren
,”
Forsch. Ingenieurwes.
,
16
(
2
), pp.
60
62
.
29.
Szablewski
,
W.
,
1952
, “
Turbulente Strömungen in Konvergenten Kanälen
,”
Arch. Appl. Mech.
,
20
(
1
), pp.
37
45
.
30.
Szablewski
,
W.
,
1954
, “
Turbulente Strömungen in Divergenten Kanälen
,”
Arch. Appl. Mech.
,
22
(
4
), pp.
268
281
.
31.
Börger
,
G.-G.
,
1973
, “
Optimierung Von Windkanaldüsen Für Den Unterschallbereich
,” Ph.D. thesis, Ruhr-Universität Bochum, Bochum, Germany.
32.
Gersten
,
K.
, and
Herwig
,
H.
,
1992
,
Strömungsmechanik: Grundlagen Der Impuls-, Wärme- und Stoffübertragung Aus Asymptotischer Sicht
,
Vieweg
, Braunschweig/Wiesbaden, Germany.
33.
Seifert
,
F.
,
2006
, “
Berechnung Inkompressibler Reibungsbehafteter Ringdiffusorströmungen Nach Der Schlankkanaltheorie
,” Ph.D. thesis, Ruhr-Universität Bochum, Bochum, Germany.
34.
Broujerdi
,
A.
, and
Kerbriaee
,
A.
,
2010
, “
Pressure Loss of Turbulent Swirling Flow in Convergent Nozzle
,”
18th International Society for Microbial Ecology (ISME)
, Teheran, Iran, May 11–13.
35.
Taylor
,
G.
,
1950
, “
The Boundary Layer in the Converging Nozzle of a Swirl Atomizer
,”
Q. J. Mech. Appl. Math.
,
3
(
2
), pp.
129
139
.
36.
Suematsu
,
Y.
,
Ito
,
T.
, and
Hayase
,
T.
,
1986
, “
Vortex Breakdown Phenomena in a Circular Pipe
,”
Bull. JSME
,
26
(
258
), pp.
4122
4129
.
37.
Jakirlic
,
S.
,
Hanjalic
,
K.
, and
Tropea
,
C.
,
2002
, “
Modeling Rotating and Swirling Turbulent Flows: A Perpetual Challenge
,”
AIAA J.
,
40
(
10
), pp.
1984
1996
.
38.
Binnie
,
A.
, and
Harris
,
D.
,
1950
, “
The Application of Boundary-Layer Theory to Swirling Liquid Flow Through a Nozzle
,”
Q. J. Mech. Appl. Math.
,
3
(
1
), pp.
89
106
.
39.
Piquet
,
J.
,
1999
,
Turbulent Flows
,
Springer
, Berlin.
40.
Schlichting
,
H.
,
1970
,
Boundary-Layer Theory
,
McGraw-Hill
, New York.
41.
Cloos
,
F.-J.
,
Zimmermann
,
A.-L.
, and
Pelz
,
P.
,
2016
, “
A Second Turbulent Regime When a Fully Developed Axial Turbulent Flow Enters a Rotating Pipe
,”
ASME
Paper No. GT2016-57499.
42.
Cloos
,
F.-J.
,
Zimmermann
,
A.-L.
, and
Pelz
,
P.
,
2017
, “
Two Turbulent Flow Regimes at the Inlet of a Rotating Pipe
,”
Eur J. Mech. B/Fluids
,
61
, pp.
330
335
.
43.
Stapp
,
D.
, and
Pelz
,
P.
,
2014
, “
Evolution of Swirl Boundary Layer and Wall Stall at Part Load—A Generic Experiment
,”
ASME
Paper No. GT2014-26235.
44.
Nikuradse
,
J.
,
1933
, “
Strömungsgesetze in Rauhen Rohren
,”
VDI Forschungsh.
,
361
, pp.
1
22
.
You do not currently have access to this content.