Coaxial rotor uninhabited aerial vehicles (UAVs) are compact compared to single rotor UAVs of comparable capacity. At the low Reynolds numbers (Re) where they operate, the simplifying assumptions from high Re rotor aerodynamics are not valid. The low Re coaxial rotor flowfield is studied including aerodynamic interactions and their effect on performance. The evolution of the wake is captured using high-speed stereo particle image velocimetry (SPIV). Improvement of upper rotor performance due to viscous swirl recovery from the lower rotor is discovered and then verified by analyzing PIV data. Interesting vortex–vortex sheet interactions are observed under the coaxial rotor affecting wake structure spatially and temporally. A qualitative model explaining the observed wake interaction phenomena is presented. Comparison with the performance of high Re rotors shows higher profile and induced drag at low Re for the same thrust coefficient.

References

1.
Harrington
,
R. D.
,
1951
, “
Full-Scale-Tunnel Investigation of the Static-Thrust Performance of a Coaxial Helicopter Rotor
,” National Advisory Committee for Aeronautics Langley Aeronautical Laboratory Langley Field,Hampton, VA, Report No.
NACA-TN-2318
.https://ntrs.nasa.gov/search.jsp?R=19930083001
2.
Dingeldein
,
R. C.
,
1954
, “
Wind-Tunnel Studies of the Performance of Multirotor Configurations
,” National Advisory Committee for Aeronautics Langley Aeronautical Laboratory Langley Field, Hampton,VA, Report No.
NACA-TN-3236
.https://ntrs.nasa.gov/search.jsp?R=19930083899
3.
Nagashima
,
T.
, and
Nakanishi
,
K.
,
1981
, “
Optimum Performance and Wake Geometry of Co-Axial Rotor in Hover
,”
DGLR Seventh European Rotorcraft and Powered Lift Aircraft Forum
, Garmisch-Partenkirchen, Germany, Paper No. 41.
4.
Sunada
,
S.
,
Tanaka
,
K.
, and
Kawashima
,
K.
,
2005
, “
Maximization of Thrust-Torque Ratio of a Coaxial Rotor
,”
J. Aircraft
,
42
(
2
), pp.
570
572
.
5.
Saito
,
S.
, and
Azuma
,
A.
,
1981
, “
A Numerical Approach to Co-Axial Rotor Aerodynamics
,” Seventh European Rotorcraft and Powered Lift Aircraft Forum, Garmisch-Partenkirchen, Germany, Paper No. 42.
6.
Andrew
,
M.
,
1981
, “
Co-Axial Rotor Aerodynamics in Hover
,”
Sixth European Rotorcraft and Powered Lift Aircraft Forum
, Bristol, UK, Sept. 16–19, Vol.
5
, pp.
163
172
.
7.
Zimmer
,
H.
,
1985
, “
The Aerodynamic Calculation of Counter Rotating Coaxial Rotors
,” Eleventh European Rotorcraft and Powered Lift Aircraft Forum, London, Paper No. 27..
8.
Bagai
,
A.
, and
Leishman
,
J. G.
,
1996
, “
Free-Wake Analysis of Tandem, Tilt-Rotor and Coaxial Rotor Configurations
,”
J. Am. Helicopter Soc.
,
41
(
3
), pp.
196
207
.
9.
Lei
,
J.
, and
He
,
J.
,
2016
, “
Adjoint-Based Aerodynamic Shape Optimization for Low Reynolds Number Airfoils
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021401
.
10.
Karasu
,
I.
,
Özden
,
M.
, and
Genç
,
M. S.
,
2018
, “
Performance Assessment of Transition Models for Three-Dimensional Flow Over NACA4412 Wings at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
140
(
12
), p.
121102
.
11.
Ziadé
,
P.
,
Feero
,
M. A.
,
Lavoie
,
P.
, and
Sullivan
,
P. E.
,
2018
, “
Shear Layer Development, Separation, and Stability Over a Low-Reynolds Number Airfoil
,”
ASME J. Fluids Eng.
,
140
(
7
), p.
071201
.
12.
Boukenkoul
,
M. A.
,
Li
,
F.-C.
,
Chen
,
W.-L.
, and
Zhang
,
H.-N.
,
2018
, “
Lift-Generation and Moving-Wall Flow Control Over a Low Aspect Ratio Airfoil
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011104
.
13.
Jang
,
C.-M.
,
Furukawa
,
M.
, and
Inoue
,
M.
,
2001
, “
Analysis of Vortical Flow Field in a Propeller Fan by LDV Measurements and LES—Part I: Three-Dimensional Vortical Flow Structures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
748
754
.
14.
Jang
,
C.
,
Furukawa
,
M.
, and
Inoue
,
M.
,
2001
, “
Analysis of Vertical Flow Field in a Propeller Fan by LDV Measurements and LES—Part II: Unsteady Nature of Vertical Flow Structures Due to Tip Vortex Breakdown
,”
ASME J. Fluids Eng
,
123
(
4
), pp.
755
761
.
15.
Guilmineau
,
E.
,
Deng
,
G.
,
Leroyer
,
A.
,
Queutey
,
P.
,
Visonneau
,
M.
, and
Wackers
,
J.
,
2018
, “
Numerical Simulations for the Wake Prediction of a Marine Propeller in Straight-Ahead Flow and Oblique Flow
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021111
.
16.
Ramasamy
,
M.
,
Leishman
,
J. G.
, and
Lee
,
T. E.
,
2007
, “
Flowfield of a Rotating-Wing Micro Air Vehicle
,”
J. Aircraft
,
44
(
4
), pp.
1236
1244
.
17.
Ramasamy
,
M.
,
Johnson
,
B.
, and
Leishman
,
J. G.
,
2008
, “
Understanding the Aerodynamic Efficiency of a Hovering Micro-Rotor
,”
J. Am. Helicopter Soc.
,
53
(
4
), pp.
412
428
.
18.
Krane
,
M. H.
,
Meyer
,
R. S.
,
Weldon
,
M. J.
,
Elbing
,
B.
, and
DeVilbiss
,
D. W.
,
2015
, “
Measurements of Loading and Tip Vortex Due to High-Reynolds Number Flow Over a Rigid Lifting Surface
,”
ASME J. Fluids Eng.
,
137
(
7
), p.
071301
.
19.
Shukla
,
D.
,
Hiremath
,
N.
, and
Komerath
,
N. M.
,
2018
, “
Low Reynolds Number Aerodynamics Study on Coaxial and Quad-Rotor
,”
AIAA
Paper No. 2018-4118.
20.
Ramasamy
,
M.
,
2013
, “
Measurements Comparing Hover Performance of Single, Coaxial, Tandem, and Tilt-Rotor Configurations
,”
69th AHS Annual Forum
, Vol. 31, Phoenix, AZ, May 21–23, p. 32.
21.
Brazinskas
,
M.
,
Prior
,
S. D.
, and
Scanlan
,
J. P.
,
2016
, “
An Empirical Study of Overlapping Rotor Interference for a Small Unmanned Aircraft Propulsion System
,”
Aerospace
,
3
(
4
), p.
32
.
22.
Ma
,
Y.
,
Chen
,
M.
,
Zhang
,
X.
, and
Wang
,
Q.
,
2016
, “
Scale-Model Tests of Coaxial Rotors in Water Tunnel Via Particle Image Velocimetry Technique
,”
Proc. Inst. Mech. Eng., Part G
,
230
(
3
), pp.
426
443
.
23.
Kickstarter
, 2018, “
Sprite: Portable and Rugged. A Totally Different Drone
,” Brooklyn, New York, accessed June 10, 2018, https://www.kickstarter.com/projects/ascentaerosystems/sprite-the-portable-rugged-totally-different-small
24.
Drone
,
C.
, 2018, “
WorkFly: Datasheet
,” Montreuil, France, accessed June 12, 2018, http://www.civicdrone.com/our-rpa/datasheet-of-drones-c10114.html
25.
Leishman
,
J. G.
, and
Syal
,
M.
,
2008
, “
Figure of Merit Definition for Coaxial Rotors
,”
J. Am. Helicopter Soc.
,
53
(
3
), pp.
290
300
.
26.
Schatzman
,
N. L.
,
2018
, “
Aerodynamics and Aeroacoustic Sources of a Coaxial Rotor
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
27.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), p.
1422
.
28.
Karpatne
,
A.
,
Sirohi
,
J.
,
Mula
,
S.
, and
Tinney
,
C.
,
2014
, “
Vortex Ring Model of Tip Vortex Aperiodicity in a Hovering Helicopter Rotor
,”
ASME J. Fluids Eng.
,
136
(
7
), p.
071104
.
You do not currently have access to this content.