The objective of this paper is to investigate the effects of nozzle spacing on the mean velocity and higher-order turbulent statistics of free twin round jets produced from sharp contraction nozzles. The experiments were performed in an air chamber where four nozzle spacing ratios, S/d = 2.8, 4.1, 5.5, and 7.1, were investigated at a fixed Reynolds number of 10,000. A planar particle image velocimetry (PIV) system was used to conduct the velocity measurements. The results show that downstream of the potential core, a reduction in spacing ratio leads to an earlier and more intense interaction between the jets, indicated by enhanced half-velocity width spread rate in the inner shear layers and a significant rise of turbulent intensities and vorticity thickness along the symmetry plane. A reduction in spacing ratio, however, confines the ambient fluid entrainment along the inner shear layers leading to a reduced core jet velocity decay rate. The closer proximity of the jets also leads to the decrease of Reynolds stresses in the inner shear layers but not in the outer shear layers. The Reynolds stress ratios along the jet centerline reveal the highest anisotropy in the potential core region.

References

1.
Lin
,
Y. E.
, and
Sheu
,
M. J.
,
1990
, “
Investigation of Two Plane Parallel Unventilated Jets
,”
Exp. Fluids
,
10
(
1
), pp.
17
22
.
2.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1997
, “
Two Parallel Plane Jets: Mean Flow and Effects of Acoustic Excitation
,”
Exp. Fluids
,
22
(
3
), pp.
251
260
.
3.
Anderson
,
E. A.
, and
Spall
,
R. E.
,
2001
, “
Experimental and Numerical Investigation of Two-Dimensional Parallel Jets
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
401
406
.
4.
Okamoto
,
T.
, and
Yagita
,
M.
,
1985
, “
Interaction of Twin Turbulent Circular Jet
,”
JSME
,
28
(
238
), pp.
617
622
.
5.
Harima
,
T.
,
Fujita
,
S.
, and
Osaka
,
H.
,
2001
, “
Mixing and Diffusion Processes of Twin Circular Free Jets With Various Nozzle Spacing
,”
Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics
, Edizioni ETS, Pisa, Italy, pp.
1017
1022
.
6.
Harima
,
T.
,
Fujita
,
S.
, and
Osaka
,
H.
,
2005
, “
Turbulent Properties of Twin Circular Free Jets With Various Nozzle Spacing
,” International Symposium on Engineering Turbulence Modelling and Measurements (
ETMM6
), Sardinia, Italy, May 23–25, pp. 501–510.
7.
Meslem
,
A.
,
Nastase
,
I.
, and
Allard
,
F.
,
2010
, “
Passive Mixing Control for Innovative Air Diffusion Terminal Devices for Buildings
,”
Build. Environ.
,
45
(
12
), pp.
2679
2688
.
8.
Aleyasin
,
S. S.
, and
Tachie
,
M. F.
,
2018
, “
Comparative Evaluation of Single/Twin round and Elliptic Jets Using Particle Image Velocimetry
,”
ASME
Paper No. FEDSM2018-83495.
9.
Gutmark
,
E. J.
, and
Wygnanski
,
1976
, “
The Planar Turbulent Jet
,”
J. Fluid Mech.
,
73
(
3
), pp.
465
495
.
10.
Aleyasin
,
S. S.
,
Tachie
,
M. F.
, and
Koupriyanov
,
M.
,
2017
, “
PIV Measurements in the Near and Intermediate Field Regions of Jets Issuing From Eight Different Nozzle Geometries
,”
Flow, Turbul. Combust.
,
99
(
2
), pp.
329
351
.
11.
Aleyasin, S. S., Fathi, N., Tachie, M. F., and Koupriyanov, M., 2017, “
Comparison of Turbulent Jets Issuing From Various Sharp Contoured Nozzles
,”
ASME
Paper No. FEDSM2017-69419.
12.
Aleyasin
,
S. S.
,
Fathi
,
N.
,
Tachie
,
M. F.
,
Vorobieff
,
P.
, and
Koupriyanov
,
M.
,
2018
, “
On the Development of Incompressible Round and Equilateral Triangular Jets Due to Reynolds Number Variation
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111202
.
13.
Aleyasin
,
S. S.
, and
Tachie
,
M. F.
,
2018
, “
Statistical Properties and Structural Analysis of Three-Dimensional Twin Round Jets Due to Variation in Reynolds Number
,”
Int. J. Heat Fluid Flow
, (epub).
14.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.
15.
Vouros
,
A.
, and
Panidis
,
T.
,
2008
, “
Influence of a Secondary, Parallel, Low Reynolds Number, Round Jet on a Turbulent Axisymmetric Jet
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1455
1467
.
16.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
,
2015
, “
Investigation in the Near-Field of a Row of Interacting Jets
,”
ASME J. Fluids Eng.
,
137
(
12
), pp.
1
18
.
17.
Lan
,
K.
, and
Jorgenson
,
J. W.
,
2001
, “
A Hybrid of Exponential and Gaussian Functions as a Simple Model of Asymmetric Chromatographic Peaks
,”
J. Chromatogr. A
,
915
(
1–2
), pp.
1
13
.
18.
Brown
,
G. L.
, and
Roshko
,
A.
,
1974
, “
On Density Effects and Large Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
,
64
(
4
), pp.
775
816
.
19.
Essel
,
E. E.
, and
Tachie
,
M. F.
,
2015
, “
Roughness Effects on Turbulent Flow Downstream of a Backward Facing Step
,”
Flow, Turbul. Combust
,
94
(
1
), pp.
125
153
.
20.
Essel
,
E. E.
,
Nematollahi
,
A.
,
Thacher
,
E. W.
, and
Tachie
,
M. F.
,
2015
, “
Effects of Upstream Roughness and Reynolds Number on Separated and Reattached Turbulent Flow
,”
J. Turbul.
,
16
(
9
), pp.
872
899
.
21.
Akon
,
A. F.
,
2017
, “
Effects of Turbulence on the Separating-Reattaching Flow Above Surface-Mounted, Three-Dimensional Bluff Bodies
,”
Ph.D. thesis
, The University of Western Ontario, London, ON, Canada.https://ir.lib.uwo.ca/etd/4445/
22.
Quinn
,
W. R.
,
2006
, “
Upstream Nozzle Shaping Effects on Near Field Flow in Round Turbulent Free Jets
,”
Eur. J. Mech. B/Fluids
,
25
(
3
), pp.
279
301
.
23.
Hashiehbaf
,
A.
, and
Romano
,
G. P.
,
2013
, “
Particle Image Velocimetry Investigation on Mixing Enhancement of Non-Circular Sharp Edge Nozzles
,”
Int. J. Heat Fluid Flow
,
44
, pp.
208
221
.
24.
Xu
,
M.-Y.
,
Tong
,
X.-Q.
,
Yue
,
D.-T.
,
Zhang
,
J.-P.
,
Mi
,
J.-C.
,
Nathan
,
G. J.
, and
Kalt
,
P. A. M.
,
2014
, “
Effect of Noncircular Orifice Plates on the Near Flow Field of Turbulent Free Jets
,”
Chin. Phys. B
,
23
(
12
), pp.
1
9
.
25.
Mi
,
J.
, and
Nathan
,
G. J.
,
2009
, “
Statistical Properties of Turbulent Free Jets Issuing From Nine Differently—Shaped Nozzles
,”
Flow, Turbul. Combust.
,
84
(
4
), pp.
583
606
.https://link.springer.com/article/10.1007/s10494-009-9240-0
26.
Quinn
,
W. R.
,
2007
, “
Experimental Study of the Near Field and Transition Region of a Free Jet Issuing From a Sharp-Edged Elliptic Orifice Plate
,”
Eur. J. Mech. B/Fluids
,
26
(
4
), pp.
583
614
.
27.
Mi
,
J.
,
Kalt
,
P.
,
Nathan
,
G. J.
, and
Wong
,
C. Y.
,
2007
, “
PIV Measurements of a Turbulent Jet Issuing From Round Sharp-Edged Plate
,”
Exp. Fluids
,
42
(
4
), pp.
625
637
.
28.
Mi
,
J.
,
Kalt
,
P.
, and
Nathan
,
G. J.
,
2009
, “
On Turbulent Lets Issuing From Notched-Rectangular and Circular Orifice Plates
,”
Flow, Turbul. Combust.
,
84
(
4
), pp.
565
582
.
29.
Xu
,
G.
, and
Antonia
,
R. A.
,
2002
, “
Effect of Different Initial Conditions on a Turbulent Round Free Jet
,”
Exp. Fluids
,
33
(
5
), pp.
677
683
.
30.
Deo
,
R. C.
,
Mi
,
J.
, and
Nathan
,
G. J.
,
2005
, “
Dependence of a Plane Turbulent Jet on Its Nozzle Contraction Profile
,”
International Conference on Jets, Wakes and Separated Flows
, Toba-shi, Mie, Japan, Oct. 5–8, pp.
1
6
.
31.
Mi
,
J.
,
Nathan
,
G. J.
, and
Nobes
,
D. S.
,
2001
, “
Mixing Characteristics of Axisymmetric Free Jets From a Contoured Nozzle, an Orifice Plate and a Pipe
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
878
883
.
You do not currently have access to this content.