A systematic assessment of unsteady Reynolds-averaged Navier–Stokes (URANS) models in predicting the complex flow through a suddenly expanding axisymmetric chamber is reported. Five types of URANS models assessed in the study comprise the standard k–ε model, the modified k–ε (1.6) model, the modified k–ε (1.3) model, the renormalization group (RNG) k–ε model, and the shear stress transport (SST) model. To assess the strengths and limitations of these models in predicting the velocity field of this precessing flow, the numerical results are assessed against available experimental results. Good agreement with the flow features and reasonable agreement with the measured phase-averaged velocity field, energy of total fluctuation and precession frequency can be achieved with both the standard k–ε and the SST models. The degree of accuracy in predicting the rate of both spreading and velocity decay of the jet was found to greatly influence the prediction of the precession motion.

References

1.
Manias
,
C.
, and
Nathan
,
G.
,
1993
, “
The Precessing Jet Gas Burner: A Low NOx Burner Providing Process Efficiency and Product Quality Improvements
,” International Kiln Association Conference, Toronto, ON, Canada, Oct. 26–28.
2.
Manias
,
C. G.
, and
Nathan
,
G. J.
,
1994
, “
Low NOx Clinker Production
,”
World Cem.
,
25
(
5
), pp.
54
56
.
3.
Videgar
,
R.
,
1997
, “
Gyro-Therm Technology Solves Burner Problems: The Application of New Gyro-Therm Burner Technology in the Durkee Plant
,”
World Cem.
,
28
, pp.
39
45
.
4.
Nathan
,
G. J.
,
Mi
,
J.
,
Alwahabi
,
Z. T.
,
Newbold
,
G. J. R.
, and
Nobes
,
D. S.
,
2006
, “
Impacts of a Jet's Exit Flow Pattern on Mixing and Combustion Performance
,”
Prog. Energy Combust. Sci.
,
32
(
5–6
), pp.
496
538
.
5.
Chen
,
X.
,
Tian
,
Z. F.
,
Kelso
,
R. M.
, and
Nathan
,
G. J.
,
2017
, “
The Topology of a Precessing Flow Within a Suddenly Expanding Axisymmetric Chamber
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
071201
.
6.
Chen
,
X.
,
Tian
,
Z. F.
,
Kelso
,
R. M.
, and
Nathan
,
G. J.
,
2017
, “
New Understanding of Mode Switching in the Fluidic Precessing Jet Flow
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
071102
.
7.
Luxton
,
R.
, and
Nathan
,
G.
, and
Luminis Pty.Ltd
,
1988
, “
Mixing of Fluids
,” Australian Patent Office, Patent Application No. 16235/88.
8.
Luxton
,
R. E.
, and
Nathan
,
G. J.
,
1991
, “
Controlling the Motion of a Fluid Jet
,” U.S. Patent and Trademark Office, Patent No. 5,060,867.
9.
Manias
,
C.
, and
Nathan
,
G.
,
1994
, “
Low NOx Clinker Production [at Swan Portland Cement Ltd., Rivervale, Perth, W. Australia]
,”
World Cem.
,
25
(
5
), pp.
54
56
.
10.
Nathan
,
G. J.
,
Hill
,
S. J.
, and
Luxton
,
R. E.
,
1998
, “
An Axisymmetric ‘Fluidic’ Nozzle to Generate Jet Precession
,”
J. Fluid Mech.
,
370
(
1
), pp.
347
380
.
11.
Escue
,
A.
, and
Cui
,
J.
,
2010
, “
Comparison of Turbulence Models in Simulating Swirling Pipe Flows
,”
Appl. Math. Modell.
,
34
(
10
), pp.
2840
2849
.
12.
Gupta
,
A.
, and
Kumar
,
R.
,
2007
, “
Three-Dimensional Turbulent Swirling Flow in a Cylinder: Experiments and Computations
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
249
261
.
13.
Orfanoudakis, N., Hatziapostolou, A., Mastorakos, E., Sardi, E., Krallis, K., and Vlachakis, N., 2003, “
Design, Evaluation Measurements and CFD Modeling of a Small Swirl Stabilised Laboratory Burner
,”
Computational Methods in Sciences and Engineering
, World Scientific, Singapore, pp. 474–478.
14.
Teodorovich
,
E.
,
1994
, “
On the Yakhot—Orszag Theory of Turbulence
,”
Fluid Dyn.
,
29
(
6
), pp.
770
779
.
15.
Wang
,
X. H.
, and
Wu
,
F.
,
1993
, “
One Modification to the Yakhot-Orszag Calculation in the Renormalization-Group Theory of Turbulence
,”
Phys. Rev. E
,
48
(
1
), p.
R37
.
16.
Nagano
,
Y.
, and
Itazu
,
Y.
,
1997
, “
Renormalization Group Theory for Turbulence: Assessment of the Yakhot-Orszag-Smith Theory
,”
Fluid Dyn. Res.
,
20
(
1–6
), pp.
157
172
.
17.
Menter
,
F.
,
1996
, “
A Comparison of Some Recent Eddy-Viscosity Turbulence Models
,”
ASME J. Fluids Eng.
,
118
(
3
), pp.
514
519
.
18.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer
, Vol. 4, Begell House, Inc., Danbury, CT, pp.
625
632
.
19.
Tian
,
Z. F.
,
Witt
,
P. J.
,
Yang
,
W.
, and
Schwarz
,
M. P.
,
2011
, “
Numerical Simulation and Validation of Gas-Particle Rectangular Jets in Crossflow
,”
Comput. Chem. Eng.
,
35
(
4
), pp.
595
605
.
20.
El-Behery
,
S. M.
, and
Hamed
,
M. H.
,
2011
, “
A Comparative Study of Turbulence Models Performance for Separating Flow in a Planar Asymmetric Diffuser
,”
Comput. Fluids
,
44
(
1
), pp.
248
257
.
21.
Tkatchenko
,
I.
,
Kornev
,
N.
,
Jahnke
,
S.
,
Steffen
,
G.
, and
Hassel
,
E.
,
2007
, “
Performances of LES and RANS Models for Simulation of Complex Flows in a Coaxial Jet Mixer
,”
Flow, Turbul. Combust.
,
78
(
2
), pp.
111
127
.
22.
Schobeiri
,
M.
, and
Abdelfattah
,
S.
,
2013
, “
On the Reliability of RANS and URANS Numerical Results for High-Pressure Turbine Simulations: A Benchmark Experimental and Numerical Study on Performance and Interstage Flow Behavior of High-Pressure Turbines at Design and Off-Design Conditions Using Two Different Turbine Designs
,”
ASME J. Turbomach.
,
135
(
6
), p.
061012
.
23.
Tian
,
Z. F.
,
Tu
,
J. Y.
,
Yeoh
,
G. H.
, and
Yuen
,
R. K. K.
,
2007
, “
Numerical Studies of Indoor Airflow and Particle Dispersion by Large Eddy Simulation
,”
Build. Environ.
,
42
(
10
), pp.
3483
3492
.
24.
Schobeiri, M. T., and Nikparto, A., 2014, “
A Comparative Numerical Study of Aerodynamics and Heat Transfer on Transitional Flow Around a Highly Loaded Turbine Blade With Flow Separation Using RANS, URANS and LES
,”
ASME
Paper No. GT2014-25828.
25.
Ferrand
,
P.
,
Boudet
,
J.
,
Caro
,
J.
,
Aubert
,
S.
, and
Rambeau
,
C.
,
2006
, “
Analyses of URANS and LES Capabilities to Predict Vortex Shedding for Rods and Turbines
,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
Springer
, Dordrecht, The Netherlands, pp.
381
393
.
26.
Guo
,
B.
,
Langrish
,
T. A. G.
, and
Fletcher
,
D. F.
,
2001
, “
Numerical Simulation of Unsteady Turbulent Flow in Axisymmetric Sudden Expansions
,”
ASME J. Fluids Eng.
,
123
(
3
), p.
574
.
27.
Hill
,
S.
,
Nathan
,
G.
, and
Luxton
,
R.
, 1995, “
Precession in Axisymmetric Confined Jets
,”
12th Australiasian Fluid Mechanics Conference
, Sydney, Australia, Dec, 10–15, pp.
135
138
.
28.
Lee
,
S. K.
,
2009
, “
Study of a Naturally Oscillating Triangular-Jet Flow
,” Ph.D. thesis, The University of Adelaide, Adelaide, Australia.
29.
Newbold
,
G.
,
1998
,
Mixing and Combustion in Precessing Jet Flows
,
Department of Mechanical Engineering, University of Adelaide
,
Adelaide, Australia
.
30.
Wong
,
C. Y.
,
Nathan
,
G. J.
, and
Kelso
,
R. M.
,
2008
, “
The Naturally Oscillating Flow Emerging From a Fluidic Precessing Jet Nozzle
,”
J. Fluid Mech.
,
606
(
1
), pp.
153
188
.
31.
Wong
,
C. Y.
,
Lanspeary
,
P. V.
,
Nathan
,
G. J.
,
Kelso
,
R. M.
, and
O'Doherty
,
T.
,
2003
, “
Phase-Averaged Velocity in a Fluidic Precessing Jet Nozzle and in Its Near External Field
,”
Exp. Therm. Fluid Sci.
,
27
(
5
), pp.
515
524
.
32.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Prentice Hall
, Loughborough, UK.
33.
Morse
,
A. P.
,
1977
,
Axisymmetric Turbulent Shear Flows With and Without Swirl
,
London University
, London.
34.
Pope
,
S.
,
1978
, “
An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly
,”
AIAA J.
,
16
(
3
), pp.
279
281
.
35.
Wong
,
C. Y.
,
2004
, “
The Flow Within and in the Near External Field of a Fluidic Precessing Jet Nozzle
,”
Ph.D. thesis
, University of Adelaide, Adelaide, Australia.https://core.ac.uk/download/pdf/12780638.pdf
36.
Morel
,
T.
,
1975
, “
Comprehensive Design of Axisymmetric Wind Tunnel Contractions
,”
ASME J. Fluids Eng.
,
97
(
2
), pp.
225
233
.
37.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
2
), pp.
241
258
.
38.
Bosch
,
G.
, and
Rodi
,
W.
,
1998
, “
Simulation of Vortex Shedding Past a Square Cylinder With Different Turbulence Models
,”
Int. J. Numer. Methods Fluids
,
28
(
4
), pp.
601
616
.
39.
Chen
,
X.
,
Tian
,
Z. F.
, and
Nathan
,
G. J.
,
2012
, “
Numerical Simulation of the Flow Within a Fluidic Precessing Jet Nozzle
,”
18th Australasian Fluid Mechanics Conference
, Launceston, Tasmania, Australia, Dec. 3, pp. 3–7.https://people.eng.unimelb.edu.au/imarusic/proceedings/18/80%20-%20Chen.pdf
40.
Fan
,
J.
,
Qian
,
L.
,
Ma
,
Y.
,
Sun
,
P.
, and
Cen
,
K.
,
2001
, “
Computational Modeling of Pulverized Coal Combustion Processes in Tangentially Fired Furnaces
,”
Chem. Eng. J.
,
81
(
1–3
), pp.
261
269
.
41.
Rodi
,
W.
,
1980
,
Turbulent Models and Their Application in Hydraulics—A State of the Art Review
,
International Association for Hydraulics Research
,
Delft, The Netherlands
.
42.
ANSYS Academic Research
, 2015, “
Release 16.2, Help System, ANSYS CFX-Slover Theory Guide
,” ANSYS, Canonsburg, PA.
43.
Wong
,
C. Y.
,
Nathan
,
G. J.
, and
O'Doherty
,
T.
,
2004
, “
The Effect of Initial Conditions on the Exit Flow From a Fluidic Precessing Jet Nozzle
,”
Exp. Fluids
,
36
(
1
), pp.
70
81
.
44.
Launder
,
B. E.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
You do not currently have access to this content.