A turbulent transition model has been applied to fluid flow problems that can be laminar, turbulent, transitional, or any combination. The model is based on a single additional transport equation for turbulence intermittency. While the original model was developed for external flows, a slight modification in model constants has enabled it to be used for internal flows. It has been successfully applied to such flows for Reynolds numbers that ranged from 100 to 100,000 in circular tubes, parallel plate channels, and circular tubes with an abrupt change in diameters. The model is shown to predict fully developed friction factors for the entire range of Reynolds numbers as well as velocity profiles for both laminar and turbulent regimes.

References

1.
Reynolds
,
O.
,
1883
, “
An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall be Direct or Sinuous, and of the Law of Resistance in Parallel Channels
,”
Philos. Trans. R. Soc. London
,
174
, pp.
935
982
.
2.
Emmons
,
H. W.
,
1951
, “
The Laminar-Turbulent Transition in a Boundary Layer—Part I
,”
J. Aeronaut. Sci.
,
18
(
7
), pp.
490
498
.
3.
Mitchner
,
M.
,
1954
, “
Propagation of Turbulence From an Instantaneous Point Disturbance
,”
J. Aeronaut. Sci.
,
21
, pp.
350
351
.
4.
Colebrook
,
C. F.
,
1938
, “
Turbulent Flow in Pipes With Particular Reference to the Transition Between Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng. London
,
11
(
4
), pp.
133
156
.
5.
Libby
,
P. A.
,
1975
, “
On the Prediction of Intermittent Turbulent Flows
,”
J. Fluid Mech.
,
68
(
2
), pp.
273
295
.
6.
Menter
,
F. R.
,
Esch
,
T.
, and
Kubacki
,
S.
,
2002
, “
Transition Modelling Based on Local Variables
,”
Eng. Turbul. Modell. Exp.
,
5
, pp.
555
564
.https://www.tib.eu/en/search/id/BLCP%3ACN044695364/Transition-modelling-based-on-local-variables/
7.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
8.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications
,”
ASME J. Turbomach.
,
128
(
3
), pp.
423
434
.
9.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
10.
Abraham
,
J. P.
,
Sparrow
,
E. M.
, and
Tong
,
J. C. K.
,
2008
, “
Breakdown of Laminar Pipe Flow Into Transitional Intermittency and Subsequent Attainment of Fully Developed Intermittent or Turbulent Flow
,”
Numer. Heat Transfer B
,
54
(
2
), pp.
103
115
.
11.
Abraham
,
J. P.
,
Sparrow
,
E. M.
, and
Tong
,
J. C. K.
,
2009
, “
Heat Transfer in All Pipe Flow Regimes: Laminar, Transitional/Intermittent, and Turbulent
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
557
563
.
12.
Minkowycz
,
W. J.
,
Abraham
,
J. P.
, and
Sparrow
,
E. M.
,
2009
, “
Numerical Simulation of Laminar Breakdown and Subsequent Intermittent and Turbulent Flow in Parallel-Plate Channels: Effects of Inlet Velocity Profile and Turbulence Intensity
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
4040
4046
.
13.
Sparrow
,
E. M.
,
Tong
,
J. C.
, and
Abraham
,
J. P.
,
2008
, “
Fluid Flow in a System With Separate Laminar and Turbulent Zones
,”
Numer. Heat Transfer A
,
53
(
4
), pp.
341
353
.
14.
Abraham
,
J. P.
,
Sparrow
,
E. M.
, and
Minkowycz
,
W. J.
,
2011
, “
Internal-Flow Nusselt Numbers for the Low-Reynolds-Number End of the Laminar-to-Turbulent Transition Regime
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
584
588
.
15.
Lovik
,
R. D.
,
Abraham
,
J. P.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
2009
, “
Laminarization and Turbulentization in a Pulsatile Pipe Flow
,”
Numer. Heat Transfer A
,
56
(
11
), pp.
861
879
.
16.
Lau
,
S.
,
1980
, “
Effect of Plenum Length and Diameter on Turbulent Heat Transfer in a Downstream Tube and on Plenum-Related Pressure Loss
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
17.
Bosmans
,
L.
,
1981
, “
Effect of Nonaligned Plenum Inlet and Outlet on Heat Transfer in a Downstream Tube and on Pressure Drop
,” M.S. thesis, University of Minnesota, Minneapolis, MN.
18.
Beavers
,
G. S.
,
Sparrow
,
E. M.
, and
Lloyd
,
J. R.
,
1971
, “
Low Reynolds Number Turbulent Flow in Large Aspect Ratio Rectangular Ducts
,”
ASME J. Basic Eng.
,
93
(
2
), pp.
296
299
.
19.
Kemink
,
R.
,
1977
, “
Heat Transfer in a Tube Downstream of a Fluid Withdrawal Branch
,” M.S. thesis, University of Minnesota, Minneapolis, MN.
20.
Wesley
,
D.
,
1976
, “
Heat Transfer in a Pipe Downstream of a Tee
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
21.
Black
,
A. W.
, III
,
1966
, “
The Effect of Circumferentially-Varying Boundary Conditions on Turbulent Heat Transfer in a Tube
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
22.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
367
.
23.
Churchill
,
S. W.
,
1977
, “
Friction-Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng. J.
,
84
(
24
), pp.
91
92
.http://files.engineering.com/download.aspx?folder=85c0f3a6-a102-4a22-9d35-f15858c0dd2b&file=CEM_-_Friction-factor_equation_(1977).pdf
24.
Jones
,
O. C.
,
1976
, “
An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
173
180
.
25.
Ghajar
,
A. J.
, and
Madon
,
K. F.
,
1992
, “
Pressure Drop Measurements in the Transition Region for a Circular Tube With Three Different Inlet Configurations
,”
Exp. Therm. Fluid Sci.
,
5
(
1
), pp.
129
135
.
26.
Tam
,
L. M.
, and
Ghajar
,
A. J.
,
1997
, “
Effect of Inlet Geometry and Heating on the Fully Developed Friction Factor in the Transition Region of a Horizontal Tube
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
52
64
.
27.
Tam
,
H. K.
,
Tam
,
H. K.
,
Ghajar
,
A. J.
,
Ng
,
W. S.
,
Wong
,
I. W.
,
Leong
,
K. F.
, and
Wu
,
C. K.
,
2011
, “
The Effect of Inner Surface Roughness and Heating on Friction Factor in Horizontal Micro-Tubes
,”
ASME
Paper No. AJK2011-16027.
28.
Tam
,
H. K.
,
Tam
,
L. M.
, and
Ghajar
,
A. J.
,
2013
, “
Effect of Inlet Geometries and Heating on the Entrance and Fully-Developed Friction Factors in the Laminar and Transition Regions of a Horizontal Tube
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
680
696
.
29.
Tam
,
H. K.
,
Tam
,
L. M.
,
Ghajar
,
A. J.
,
Sun
,
C.
, and
Leung
,
H. Y.
,
2011
, “
Experimental Investigation of the Single-Phase Friction Factor and Heat Transfer Inside the Horizontal Internally Micro-Fin Tubes in the Transition Region
,”
ASME
Paper No. HT2012-58125.
30.
Tam
,
H. K.
,
Tam
,
L. M.
,
Ghajar
,
A. J.
,
Sun
,
C.
, and
Lai
,
W. K.
,
2012
, “
Experimental Investigation of Single-Phase Heat Transfer in a Horizontal Internally Micro-Fin Tube With Three Different Inlet Configurations
,”
ASME
Paper No. HT2012-58125.
31.
Tam
,
H. K.
,
Tam
,
L. M.
,
Ghajar
,
A. J.
,
Tam
,
S. C.
, and
Zhang
,
T.
,
2012
, “
Experimental Investigation of Heat Transfer, Friction Factor, and Optimal Fin Geometries for the Internally Microfin Tubes in the Transition and Turbulent Regions
,”
J. Enhanc. Heat Transf.
19
(5), pp. 457–476.
32.
Everts
,
M.
, and
Meyer
,
J. P.
,
2018
, “
Relationship Between Pressure Drop and Heat Transfer of Developing and Fully Developed Flow in Smooth Horizontal Circular Tubes in the Laminar, Transitional, Quasi-Turbulent and Turbulent Flow Regimes
,”
Int. J. Heat Mass Transfer.
,
117
, pp.
1231
1250
.
33.
Everts
,
M.
, and
Meyer
,
J. P.
,
2018
, “
Heat Transfer of Developing and Fully Developed Flow in Smooth Horizontal Tubes in the Transitional Flow Regime
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1331
1351
.
34.
Menter
,
F. R.
,
Smirnov
,
P. E.
,
Liu
,
T.
, and
Avancha
,
R.
,
2015
, “
A One-Equation Local Correlation-Based Transition Model
,”
Flow Turbul. Combust.
,
95
(
4
), pp.
583
619
.
35.
Nikuradse
,
J.
,
1933
, “
Laws of Flow in Rough Pipes
,” VDI Forschungsheft, NACA Technical Memorandum 1292.
36.
McKeon
,
B. J.
,
Swanson
,
C. J.
,
Zagarola
,
M. V.
,
Donnelly
,
R. J.
, and
Smits
,
A. J.
,
2004
, “
Friction Factors for Smooth Pipe Flow
,”
J. Fluid Mech.
,
511
, pp.
41
44
.
37.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Advances in Heat Transfer
, Vol.
6
,
T. F.
Irvine
, and
J. P.
Hartnett
, eds.,
Academic Press
,
New York
, pp.
503
564
.
38.
Filonenko
,
G. K.
,
1954
, “
Hydraulic Resistance in Pipes
,”
Teploenergetika
,
1
, pp.
40
44
.
39.
Konakov
,
P. K.
,
1946
, “
A New Correlation for the Friction Factor in Smooth Tubes
,”
Izvestija SSSR
,
51
, pp.
503
506
.
40.
Blasius
,
H.
,
1913
,
Das Aehnlichkeitsgesetz Bei Reibungsvorgangen in Flussigkeiten. Forschungshelft
, Vol.
131
, Springer, Berlin, pp.
1
41
.
41.
Moody
,
L. F.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
(
8
), pp.
671
684
.https://www.scribd.com/document/206954171/Lewis-F-Moody-Friction-Factor-for-Pipe-Flow-1944
42.
Wu
,
X.
, and
Moin
,
P.
,
2008
, “
A Direct Numerical Simulation Study on the Mean Velocity Characteristics in Turbulent Pipe Flow
,”
J. Fluid Mech.
,
608
, pp.
81
112
.
43.
Loulou
,
P.
,
Moser
,
R. D.
,
Mansour
,
N. N.
, and
Cantwell
,
B. J.
,
1997
, “
Direct Numerical Simulation of Incompressible Pipe Flow Using a B-Spline Spectral Method
,” National Aeronautics and Space Administration, Moffett Field, CA, NASA Technical Memorandum
110436
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970011270.pdf
44.
Den Toonder
,
J. M. J.
, and
Nieuwstadt
,
F. T. M.
,
1997
, “
Reynolds Number Effects in a Turbulent Pipe Flow for Low to Moderate Re
,”
Phys. Fluids
,
9
(
11
), pp.
3398
3409
.
45.
Swanson
,
C. J.
,
Julian
,
B.
,
Ihas
,
G. G.
, and
Donnelly
,
R. J.
,
2002
, “
Pipe Flow Measurements Over a Wide Range of Reynolds Numbers Using Liquid Helium and Various Gases
,”
J. Fluid Mech.
,
461
, pp.
51
60
.
46.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill
,
New York
.
47.
Spalding
,
B. B.
,
1961
, “
A Single Formula for the Law of the Wall
,”
J. Fluid Mech.
,
28
, pp.
455
457
.
48.
Douglas
,
J. F.
,
Gasiorek
,
J. M.
,
Swaffield
,
J. A.
, and
Jack
,
L. B.
,
2005
,
Fluids Mechanics
, 5th ed.,
Pearson Education
,
Harlow, UK
.
You do not currently have access to this content.