A turbulent transition model has been applied to fluid flow problems that can be laminar, turbulent, transitional, or any combination. The model is based on a single additional transport equation for turbulence intermittency. While the original model was developed for external flows, a slight modification in model constants has enabled it to be used for internal flows. It has been successfully applied to such flows for Reynolds numbers that ranged from 100 to 100,000 in circular tubes, parallel plate channels, and circular tubes with an abrupt change in diameters. The model is shown to predict fully developed friction factors for the entire range of Reynolds numbers as well as velocity profiles for both laminar and turbulent regimes.
Issue Section:
Fundamental Issues and Canonical Flows
References
1.
Reynolds
, O.
, 1883
, “An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall be Direct or Sinuous, and of the Law of Resistance in Parallel Channels
,” Philos. Trans. R. Soc. London
, 174
, pp. 935
–982
.2.
Emmons
, H. W.
, 1951
, “The Laminar-Turbulent Transition in a Boundary Layer—Part I
,” J. Aeronaut. Sci.
, 18
(7
), pp. 490
–498
.3.
Mitchner
, M.
, 1954
, “Propagation of Turbulence From an Instantaneous Point Disturbance
,” J. Aeronaut. Sci.
, 21
, pp. 350
–351
.4.
Colebrook
, C. F.
, 1938
, “Turbulent Flow in Pipes With Particular Reference to the Transition Between Smooth and Rough Pipe Laws
,” J. Inst. Civ. Eng. London
, 11
(4
), pp. 133
–156
.5.
Libby
, P. A.
, 1975
, “On the Prediction of Intermittent Turbulent Flows
,” J. Fluid Mech.
, 68
(2
), pp. 273
–295
.6.
Menter
, F. R.
, Esch
, T.
, and Kubacki
, S.
, 2002
, “Transition Modelling Based on Local Variables
,” Eng. Turbul. Modell. Exp.
, 5
, pp. 555
–564
.https://www.tib.eu/en/search/id/BLCP%3ACN044695364/Transition-modelling-based-on-local-variables/7.
Menter
, F. R.
, Langtry
, R. B.
, Likki
, S. R.
, Suzen
, Y. B.
, Huang
, P. G.
, and Völker
, S.
, 2006
, “A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,” ASME J. Turbomach.
, 128
(3
), pp. 413
–422
.8.
Langtry
, R. B.
, Menter
, F. R.
, Likki
, S. R.
, Suzen
, Y. B.
, Huang
, P. G.
, and Völker
, S.
, 2006
, “A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications
,” ASME J. Turbomach.
, 128
(3
), pp. 423
–434
.9.
Menter
, F. R.
, 1994
, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,” AIAA J.
, 32
(8
), pp. 1598
–1605
.10.
Abraham
, J. P.
, Sparrow
, E. M.
, and Tong
, J. C. K.
, 2008
, “Breakdown of Laminar Pipe Flow Into Transitional Intermittency and Subsequent Attainment of Fully Developed Intermittent or Turbulent Flow
,” Numer. Heat Transfer B
, 54
(2
), pp. 103
–115
.11.
Abraham
, J. P.
, Sparrow
, E. M.
, and Tong
, J. C. K.
, 2009
, “Heat Transfer in All Pipe Flow Regimes: Laminar, Transitional/Intermittent, and Turbulent
,” Int. J. Heat Mass Transfer
, 52
(3–4
), pp. 557
–563
.12.
Minkowycz
, W. J.
, Abraham
, J. P.
, and Sparrow
, E. M.
, 2009
, “Numerical Simulation of Laminar Breakdown and Subsequent Intermittent and Turbulent Flow in Parallel-Plate Channels: Effects of Inlet Velocity Profile and Turbulence Intensity
,” Int. J. Heat Mass Transfer
, 52
(17–18
), pp. 4040
–4046
.13.
Sparrow
, E. M.
, Tong
, J. C.
, and Abraham
, J. P.
, 2008
, “Fluid Flow in a System With Separate Laminar and Turbulent Zones
,” Numer. Heat Transfer A
, 53
(4
), pp. 341
–353
.14.
Abraham
, J. P.
, Sparrow
, E. M.
, and Minkowycz
, W. J.
, 2011
, “Internal-Flow Nusselt Numbers for the Low-Reynolds-Number End of the Laminar-to-Turbulent Transition Regime
,” Int. J. Heat Mass Transfer
, 54
(1–3
), pp. 584
–588
.15.
Lovik
, R. D.
, Abraham
, J. P.
, Minkowycz
, W. J.
, and Sparrow
, E. M.
, 2009
, “Laminarization and Turbulentization in a Pulsatile Pipe Flow
,” Numer. Heat Transfer A
, 56
(11
), pp. 861
–879
.16.
Lau
, S.
, 1980
, “Effect of Plenum Length and Diameter on Turbulent Heat Transfer in a Downstream Tube and on Plenum-Related Pressure Loss
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.17.
Bosmans
, L.
, 1981
, “Effect of Nonaligned Plenum Inlet and Outlet on Heat Transfer in a Downstream Tube and on Pressure Drop
,” M.S. thesis, University of Minnesota, Minneapolis, MN.18.
Beavers
, G. S.
, Sparrow
, E. M.
, and Lloyd
, J. R.
, 1971
, “Low Reynolds Number Turbulent Flow in Large Aspect Ratio Rectangular Ducts
,” ASME J. Basic Eng.
, 93
(2
), pp. 296
–299
.19.
Kemink
, R.
, 1977
, “Heat Transfer in a Tube Downstream of a Fluid Withdrawal Branch
,” M.S. thesis, University of Minnesota, Minneapolis, MN.20.
Wesley
, D.
, 1976
, “Heat Transfer in a Pipe Downstream of a Tee
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.21.
Black
, A. W.
, III, 1966
, “The Effect of Circumferentially-Varying Boundary Conditions on Turbulent Heat Transfer in a Tube
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.22.
Gnielinski
, V.
, 1976, “New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,” Int. Chem. Eng.
, 16
, pp. 359
–367
.23.
Churchill
, S. W.
, 1977
, “Friction-Factor Equation Spans All Fluid-Flow Regimes
,” Chem. Eng. J.
, 84
(24
), pp. 91
–92
.http://files.engineering.com/download.aspx?folder=85c0f3a6-a102-4a22-9d35-f15858c0dd2b&file=CEM_-_Friction-factor_equation_(1977).pdf24.
Jones
, O. C.
, 1976
, “An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts
,” ASME J. Fluids Eng.
, 98
(2
), pp. 173
–180
.25.
Ghajar
, A. J.
, and Madon
, K. F.
, 1992
, “Pressure Drop Measurements in the Transition Region for a Circular Tube With Three Different Inlet Configurations
,” Exp. Therm. Fluid Sci.
, 5
(1
), pp. 129
–135
.26.
Tam
, L. M.
, and Ghajar
, A. J.
, 1997
, “Effect of Inlet Geometry and Heating on the Fully Developed Friction Factor in the Transition Region of a Horizontal Tube
,” Exp. Therm. Fluid Sci.
, 15
(1
), pp. 52
–64
.27.
Tam
, H. K.
, Tam
, H. K.
, Ghajar
, A. J.
, Ng
, W. S.
, Wong
, I. W.
, Leong
, K. F.
, and Wu
, C. K.
, 2011
, “The Effect of Inner Surface Roughness and Heating on Friction Factor in Horizontal Micro-Tubes
,” ASME
Paper No. AJK2011-16027.28.
Tam
, H. K.
, Tam
, L. M.
, and Ghajar
, A. J.
, 2013
, “Effect of Inlet Geometries and Heating on the Entrance and Fully-Developed Friction Factors in the Laminar and Transition Regions of a Horizontal Tube
,” Exp. Therm. Fluid Sci.
, 44
, pp. 680
–696
.29.
Tam
, H. K.
, Tam
, L. M.
, Ghajar
, A. J.
, Sun
, C.
, and Leung
, H. Y.
, 2011
, “Experimental Investigation of the Single-Phase Friction Factor and Heat Transfer Inside the Horizontal Internally Micro-Fin Tubes in the Transition Region
,” ASME
Paper No. HT2012-58125.30.
Tam
, H. K.
, Tam
, L. M.
, Ghajar
, A. J.
, Sun
, C.
, and Lai
, W. K.
, 2012
, “Experimental Investigation of Single-Phase Heat Transfer in a Horizontal Internally Micro-Fin Tube With Three Different Inlet Configurations
,” ASME
Paper No. HT2012-58125.31.
Tam
, H. K.
, Tam
, L. M.
, Ghajar
, A. J.
, Tam
, S. C.
, and Zhang
, T.
, 2012
, “Experimental Investigation of Heat Transfer, Friction Factor, and Optimal Fin Geometries for the Internally Microfin Tubes in the Transition and Turbulent Regions
,” J. Enhanc. Heat Transf.
19
(5), pp. 457–476.32.
Everts
, M.
, and Meyer
, J. P.
, 2018
, “Relationship Between Pressure Drop and Heat Transfer of Developing and Fully Developed Flow in Smooth Horizontal Circular Tubes in the Laminar, Transitional, Quasi-Turbulent and Turbulent Flow Regimes
,” Int. J. Heat Mass Transfer.
, 117
, pp. 1231
–1250
.33.
Everts
, M.
, and Meyer
, J. P.
, 2018
, “Heat Transfer of Developing and Fully Developed Flow in Smooth Horizontal Tubes in the Transitional Flow Regime
,” Int. J. Heat Mass Transfer
, 117
, pp. 1331
–1351
.34.
Menter
, F. R.
, Smirnov
, P. E.
, Liu
, T.
, and Avancha
, R.
, 2015
, “A One-Equation Local Correlation-Based Transition Model
,” Flow Turbul. Combust.
, 95
(4
), pp. 583
–619
.35.
Nikuradse
, J.
, 1933
, “Laws of Flow in Rough Pipes
,” VDI Forschungsheft, NACA Technical Memorandum 1292.36.
McKeon
, B. J.
, Swanson
, C. J.
, Zagarola
, M. V.
, Donnelly
, R. J.
, and Smits
, A. J.
, 2004
, “Friction Factors for Smooth Pipe Flow
,” J. Fluid Mech.
, 511
, pp. 41
–44
.37.
Petukhov
, B. S.
, 1970
, “Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,” Advances in Heat Transfer
, Vol. 6
, T. F.
Irvine
, and J. P.
Hartnett
, eds., Academic Press
, New York
, pp. 503
–564
.38.
Filonenko
, G. K.
, 1954
, “Hydraulic Resistance in Pipes
,” Teploenergetika
, 1
, pp. 40
–44
.39.
Konakov
, P. K.
, 1946
, “A New Correlation for the Friction Factor in Smooth Tubes
,” Izvestija SSSR
, 51
, pp. 503
–506
.40.
Blasius
, H.
, 1913
, Das Aehnlichkeitsgesetz Bei Reibungsvorgangen in Flussigkeiten. Forschungshelft
, Vol. 131
, Springer, Berlin, pp. 1
–41
.41.
Moody
, L. F.
, 1944
, “Friction Factors for Pipe Flow
,” Trans. ASME
, 66
(8
), pp. 671
–684
.https://www.scribd.com/document/206954171/Lewis-F-Moody-Friction-Factor-for-Pipe-Flow-194442.
Wu
, X.
, and Moin
, P.
, 2008
, “A Direct Numerical Simulation Study on the Mean Velocity Characteristics in Turbulent Pipe Flow
,” J. Fluid Mech.
, 608
, pp. 81
–112
.43.
Loulou
, P.
, Moser
, R. D.
, Mansour
, N. N.
, and Cantwell
, B. J.
, 1997
, “Direct Numerical Simulation of Incompressible Pipe Flow Using a B-Spline Spectral Method
,” National Aeronautics and Space Administration, Moffett Field, CA, NASA Technical Memorandum 110436
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970011270.pdf44.
Den Toonder
, J. M. J.
, and Nieuwstadt
, F. T. M.
, 1997
, “Reynolds Number Effects in a Turbulent Pipe Flow for Low to Moderate Re
,” Phys. Fluids
, 9
(11
), pp. 3398
–3409
.45.
Swanson
, C. J.
, Julian
, B.
, Ihas
, G. G.
, and Donnelly
, R. J.
, 2002
, “Pipe Flow Measurements Over a Wide Range of Reynolds Numbers Using Liquid Helium and Various Gases
,” J. Fluid Mech.
, 461
, pp. 51
–60
.46.
White
, F. M.
, 2006
, Viscous Fluid Flow
, 3rd ed., McGraw-Hill
, New York
.47.
Spalding
, B. B.
, 1961
, “A Single Formula for the Law of the Wall
,” J. Fluid Mech.
, 28
, pp. 455
–457
.48.
Douglas
, J. F.
, Gasiorek
, J. M.
, Swaffield
, J. A.
, and Jack
, L. B.
, 2005
, Fluids Mechanics
, 5th ed., Pearson Education
, Harlow, UK
.Copyright © 2019 by ASME
You do not currently have access to this content.