Abstract

This study proposes a numerical model to collect and analyze relationships between flow structures and drag forces on a microfin enhanced surface. We utilized a large eddy simulation (LES) with a localized, dynamic kinetic energy, subgrid-scale model (LDKM) to predict turbulent flow structures. The accuracy of the numerical model was verified by a telescopic particle image velocimetry (PIV) system. Of special note was the strong match of PIV flow structures with numerical flow structures simulated with LES. To detect two main flow structures, lateral and longitudinal, a new method based on the correlation coefficient of velocity fluctuation was developed. Two main types of drag, form, and skin-friction, were discussed and analyzed as occurring on complex near-surface engineered enhancements. Several problems about the relationships were discussed and solved. First, the study determined which drag force dominated the pressure drop (Δp) with different Reynolds numbers. Second, the study analyzed how turbulent flow structures affected form drag and friction drag, respectively. Third, the study explained why the microfins in the paper designed by Webb et al. were better suited for the high Reynold number cases (Reynolds number ≈ 28,000). The goal of the paper was not to find a new Reynolds number-based correlation but to find flow structures responsible for pressure drop and understand the mechanisms causing it.

References

1.
Li
,
P.
,
Campbell
,
M.
,
Zhang
,
N.
, and
Eckels
,
S. J.
,
2019
, “
Relationship Between Turbulent Structures and Heat Transfer in Microfin Enhanced Surfaces Using Large Eddy Simulations and Particle Image Velocimetry
,”
Int. J. Heat Mass Transfer
,
136
, pp.
1282
1298
.10.1016/j.ijheatmasstransfer.2019.03.063
2.
Bhatia
,
R. S.
, and
Webb
,
R. L.
,
2001
, “
Numerical Study of Turbulent Flow and Heat Transfer in Micro-Fin Tubes–Part 1, Model Validation
,”
J. Enhanc. Heat Transfer
,
8
(
5
), pp.
291
304
.10.1615/JEnhHeatTransf.v8.i5.10
3.
Bhatia
,
R. S.
, and
Webb
,
R. L.
,
2001
, “
Numerical Study of Turbulent Flow and Heat Transfer in Micro-Fin Tubes–Part 2, Parametric Study
,”
J. Enhanc. Heat Transfer
,
8
(
5
), pp.
305
314
.10.1615/JEnhHeatTransf.v8.i5.20
4.
Ji
,
W.-T.
,
Jacobi
,
A. M.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2015
, “
Summary and Evaluation on Single-Phase Heat Transfer Enhancement Techniques of Liquid Laminar and Turbulent Pipe Flow
,”
Int. J. Heat Mass Transfer
,
88
, pp.
735
754
.10.1016/j.ijheatmasstransfer.2015.04.008
5.
Webb
,
R. L.
,
Narayanamurthy
,
R.
, and
Thors
,
P.
,
2000
, “
Heat Transfer and Friction Characteristics of Internal Helical-Rib Roughness
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
1
), pp.
134
142
.10.1115/1.521444
6.
Webb
,
R. L.
, and
Kim
,
N. Y.
,
2005
,
Enhanced Heat Transfer
,
Taylor Francis
,
New York
.
7.
Christensen
,
K. T.
, and
Adrian
,
R. J.
,
2001
, “
Statistical Evidence of Hairpin Vortex Packets in Wall Turbulence
,”
J. Fluid Mech.
,
431
, pp.
433
443
.10.1017/S0022112001003512
8.
Dennis
,
D. J.
,
2015
, “
Coherent Structures in Wall-Bounded Turbulence
,”
An. Acad. Bras. Ciênc.
,
87
(
2
), pp.
1161
1193
.10.1590/0001-3765201520140622
9.
Haidari
,
A. H.
, and
Smith
,
C. R.
,
1994
, “
The Generation and Regeneration of Single Hairpin Vortices
,”
J. Fluid Mech.
,
277
(
1
), pp.
135
162
.10.1017/S0022112094002715
10.
JCR
,
H.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Stream, and Convergence Zones in Turbulent Flows
,”
Proceeding of the Summer Program
, Paper No. N89-24555, pp. 193–208.https://ntrs.nasa.gov/citations/19890015184
11.
Li
,
P.
,
2019
, “
Validation of Large Eddy Simulations for Modeling Micro-Structured Enhanced Heat Transfer Surfaces
,”
Ph.D. thesis
, Kansas State University, Manhattan, KS.http://hdl.handle.net/2097/39514
12.
Ryu
,
D. N.
,
Choi
,
D. H.
, and
Patel
,
V. C.
,
2007
, “
Analysis of Turbulent Flow in Channels Roughened by Two-Dimensional Ribs and Three-Dimensional Blocks. Part I: Resistance
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1098
1111
.10.1016/j.ijheatfluidflow.2006.11.006
13.
Ryu
,
D. N.
,
Choi
,
D. H.
, and
Patel
,
V. C.
,
2007
, “
Analysis of Turbulent Flow in Channels Roughened by Two-Dimensional Ribs and Three-Dimensional Blocks. Part II: Heat Transfer
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1112
1124
.10.1016/j.ijheatfluidflow.2006.11.007
14.
Li
,
P.
,
Campbell
,
M.
, and
Eckels
,
S.
,
2022
, “
Flow Patterns on Microfin Enhanced Surfaces
,”
ASME J. Fluids Eng.
, 144(4), p. 040903.10.1115/1.4053570
15.
Kim
,
W.-W.
,
Menon
,
S.
,
Kim
,
W.-W.
, and
Menon
,
S.
,
1997
, “
Application of the Localized Dynamic Subgrid-Scale Model to Turbulent Wall-Bounded Flows
,”
35th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 6–9, p. 210.10.2514/6.1997-210
16.
Li
,
P.
,
Eckels
,
S. J.
,
Zhang
,
N.
, and
Mann
,
G. W.
,
2016
, “
Effects of Parallel Processing on Large Eddy Simulations in ANSYS Fluent
,”
ASME
Paper No. FEDSM2016-7884.10.1115/FEDSM2016-7884
17.
Manual
,
U. D. F.
,
2009
,
Ansys Fluent 12.0, Theory Guide
,
ANSYS
,
Canonsburg, PA
.
18.
Campet
,
R.
,
Zhu
,
M.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Nemri
,
M.
,
2019
, “
Large Eddy Simulation of a Single-Started Helically Ribbed Tube With Heat Transfer
,”
Int. J. Heat Mass Transfer
,
132
, pp.
961
969
.10.1016/j.ijheatmasstransfer.2018.11.163
19.
Li
,
P.
,
Eckels
,
S. J.
,
Mann
,
G. W.
, and
Zhang
,
N.
,
2018
, “
A Method of Measuring Turbulent Flow Structures With Particle Image Velocimetry and Incorporating Into Boundary Conditions of Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
140
(
7
), p.
071401
.10.1115/1.4039256
20.
Dai
,
Z.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2015
, “
Impact of Tortuous Geometry on Laminar Flow Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
83
, pp.
382
398
.10.1016/j.ijheatmasstransfer.2014.12.019
21.
Li
,
P.
,
Eckels
,
S. J.
,
Mann
,
G. W.
, and
Zhang
,
N.
,
2014
, “
Experimental Measurements in Near-Wall Regions by Particle Image Velocimetry (PIV)
,”
ASME
Paper No. FEDSM2014-21918.10.1115/FEDSM2014-21918
22.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
,
1999
, “
PIV Measurements of a Microchannel Flow
,”
Exp. Fluids
,
27
(
5
), pp.
414
419
.10.1007/s003480050366
23.
Shafaee
,
M.
,
Abdehkakha
,
A.
, and
Elkaie
,
A.
,
2014
, “
Reverse Analysis of a Spiral Injector to Find Geometrical Parameters and Flow Conditions Using a GA-Based Program
,”
Aerosp. Sci. Technol.
,
39
, pp.
137
144
.10.1016/j.ast.2014.09.008
24.
Westerweel
,
J.
,
Elsinga
,
G. E.
, and
Adrian
,
R. J.
,
2013
, “
Particle Image Velocimetry for Complex and Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
409
436
.10.1146/annurev-fluid-120710-101204
25.
Pedlosky
,
J.
,
1987
,
Geophysical Fluid Dynamics
,
Springer
, New York.
26.
Batchelor
,
C. K.
, and
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, Cambridge, UK.
27.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J. Res. Dev.
,
11
(
2
), pp.
215
234
.10.1147/rd.112.0215
28.
Edwards
,
A. L.
,
1985
, “
An Introduction to Linear Regression and Correlation
,” Freeman, San Francisco, CA.
29.
Martin
,
S.
, and
Bhushan
,
B.
,
2014
, “
Fluid Flow Analysis of a Shark-Inspired Microstructure
,”
J. Fluid Mech.
,
756
, pp.
5
29
.10.1017/jfm.2014.447
30.
Holmén
,
V.
,
2012
, “
Methods for Vortex Identification
,”
Master's theses
in Mathematical Sciences, Lund University, Lund, Sweden.https://lup.lub.lu.se/studentpapers/search/publication/3241710
31.
Soleimani
,
S.
, and
Eckels
,
S.
,
2021
, “
A Review of Drag Reduction and Heat-Transfer Enhancement by Riblet Surfaces in Closed-and Open-Channel Flow
,”
Int. J. Thermofluids
,
9
, p.
100053
.10.1016/j.ijft.2020.100053
You do not currently have access to this content.