Abstract

The flow in the regenerative flow pump (RFP) is usually featured by unsteady flow fluctuation and complex interference efficacy. Two pump models with various blade arrangements were investigated in this study to explore the transient flow and the pressure fluctuation characteristics by computational fluids dynamics (CFD) simulation and experimental validation. The results illustrate that the average pressure variation of the impeller and channel across the impeller's rotating direction is in consistence with the mass exchange flow and the circulation number in the pump. Furthermore, the inlet and outlet pressures are analyzed, respectively, in the time and frequency domain, showing that the head coefficient fluctuates periodically with the fluctuating number equal to the blade number. The dominant frequencies of the two pump models are primarily blade passing frequency (BPF) and its harmonics. Additionally, the pressure fluctuation spectrum and the fluctuating amplitude at dominant frequency in each component of RFP are extracted to reveal the effects of the blade arrangement on the pressure fluctuation characteristics, where the fluctuating amplitude in the model with staggered blades was reduced significantly compared to the model with symmetrical blades. This could be attributed to the more uniform distribution of the internal flow, the less stronger pressure fluctuation, and the better modulation pattern of the root-mean-square (RMS) pressure. This work reveals the pressure fluctuation characteristics inside the RFP, and the design approach of increasing the circumferential uniformity could serve as a reference for the pressure fluctuation reduction and vibration and noise improvement of RFPs.

References

1.
Cantini
,
G.
, and
Salvadori
,
S.
,
2021
, “
Numerical Characterization of the Performance Curve of a Regenerative Pump-as-Turbine
,”
ASME J. Fluids Eng.
,
143
(
5
), p.
051001
.10.1115/1.4050156
2.
Zhang
,
F.
,
Appiah
,
D.
,
Zhang
,
J. F.
,
Yuan
,
S. Q.
,
Osman
,
M. K.
, and
Chen
,
K.
,
2018
, “
Transient Flow Characterization in Energy Conversion of a Side Channel Pump Under Different Blade Suction Angles
,”
Energy
,
161
, pp.
635
648
.10.1016/j.energy.2018.07.152
3.
Zhang
,
F.
,
Appiah
,
D.
,
Chen
,
K.
,
Yuan
,
S. Q.
,
Adu-Poku
,
K. A.
, and
Wang
,
Y. F.
,
2020
, “
Dynamic Characterization of Vortex Structures and Their Evolution Mechanisms in a Side Channel Pump
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111502
.10.1115/1.4047808
4.
Wang
,
Y. F.
,
Zhang
,
F.
,
Yuan
,
S. Q.
,
Chen
,
K.
,
Wei
,
X. Y.
, and
Appiah
,
D.
,
2020
, “
Effect of URANS and Hybrid RANS-Large Eddy Simulation Turbulence Models on Unsteady Turbulent Flows Inside a Side Channel Pump
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061503
.10.1115/1.4045995
5.
Zhang
,
F.
,
Chen
,
K.
,
Appiah
,
D.
,
Yuan
,
S. Q.
,
Adu-Poku
,
K. A.
, and
Hong
,
F.
,
2021
, “
Description of Unsteady Flow Characteristics in a Side Channel Pump With a Convex Blade
,”
ASME J. Fluids Eng.
,
143
(
4
), p.
041201
.10.1115/1.4049369
6.
Yanagihara
,
N.
,
Murakami
,
T.
,
Shiraishi
,
H.
, and
Senoo
,
Y.
,
1993
, “
Noise Reduction of a Regenerative Pump
,”
Nihon Kikai Gakkai Ronbunshu B Hen/Trans. Jpn. Soc. Mech. Eng. Part B
,
59
(
565
), pp.
2863
2867
.10.1299/kikaib.59.2863
7.
Zhang
,
L.
, and
Wu
,
D. Z.
,
2018
, “
Analyses of Pressure Fluctuation and Fluctuation Reduction of an Automobile Fuel Pump
,”
ASME
Paper No. FEDSM2016-7820.10.1115/FEDSM2016-7820
8.
Ewald
,
D.
,
Pavlovic
,
A.
, and
Bollinger
,
J.
,
1971
, “
Noise Reduction by Applying Modulation Principles
,”
J. Acoust. Soc. Am.
,
49
(
5A
), pp.
1381
1385
.10.1121/1.1912513
9.
Zhang
,
F. X.
,
Wu
,
P.
, and
Wu
,
D. Z.
,
2014
, “
Study on Pressure Fluctuation and Fluctuation Reduction of a Micro Vortex Pump
,”
ASME
Paper No. FEDSM2014-21884.10.1115/FEDSM2014-21884
10.
Kawai
,
Y.
, and
Honda
,
Y.
,
2012
, “
Liquid Pump
,” CN Patent No. CN102062104B.
11.
Chu
,
S.
,
Dong
,
R.
, and
Katz
,
J.
,
1995
, “
Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump—Part A: Use of PDV Data to Compute the Pressure Field
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
24
29
.10.1115/1.2816813
12.
Chu
,
S.
,
Dong
,
R.
, and
Katz
,
J.
,
1995
, “
Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump—Part B: Effects of Blade-Tongue Interactions
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
30
35
.10.1115/1.2816814
13.
Morgenroth
,
M.
, and
Weaver
,
D. S.
,
1998
, “
Sound Generation by a Centrifugal Volute Pump at Blade Pass Frequency
,”
ASME J. Turbomach.
,
120
(
4
), pp.
736
743
.10.1115/1.2841784
14.
Wu
,
D. H.
,
Ren
,
Y.
,
Mou
,
J. G.
, and
Gu
,
Y. Q.
,
2017
, “
Investigation of the Correlation Between Noise & Vibration Characteristics and Unsteady Flow in a Circulator Pump
,”
J. Mech. Sci. Technol.
,
31
(
5
), pp.
2155
2166
.10.1007/s12206-017-0411-y
15.
Tan
,
L. W.
,
Zhang
,
D. S.
,
Shi
,
W. D.
,
Zhou
,
L.
, and
Cai
,
X. T.
,
2017
, “
Influence of Volute Basic Circle Diameter on the Pressure Fluctuations and Flow Noise of a Low Specific Speed Sewage Pump
,”
J. Vibroeng.
,
19
(
5
), pp.
3779
3796
.10.21595/jve.2017.18067
16.
Xu
,
C.
,
Zhou
,
H. H.
, and
Mao
,
Y. J.
,
2020
, “
Analysis of Vibration and Noise Induced by Unsteady Flow Inside a Centrifugal Compressor
,”
Aerosp. Sci. Technol.
,
107
, p.
106286
.10.1016/j.ast.2020.106286
17.
Chu
,
S.
,
Dong
,
R.
, and
Katz
,
J.
,
1997
, “
Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
506
515
.10.1115/1.2841152
18.
Guelich
,
J.
,
2010
,
Centrifugal Pumps
,
Springer
,
Berlin, Germany
.
19.
Tao
,
Y.
,
Yuan
,
S. Q.
,
Liu
,
J. R.
,
Zhang
,
F.
, and
Tao
,
J. P.
,
2016
, “
Influence of Blade Thickness on Transient Flow Characteristics of Centrifugal Slurry Pump With Semi-Open Impeller
,”
Chin. J. Mech. Eng.
,
29
(
6
), pp.
1209
1217
.10.3901/CJME.2016.0824.098
20.
Yan
,
P.
,
Chu
,
N.
,
Wu
,
D. Z.
,
Cao
,
L. L.
,
Yang
,
S.
, and
Wu
,
P.
,
2017
, “
Computational Fluid Dynamics-Based Pump Redesign to Improve Efficiency and Decrease Unsteady Radial Forces
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011101
.10.1115/1.4034365
21.
Li
,
Q. Q.
,
Li
,
S. Y.
,
Wu
,
P.
,
Huang
,
B.
, and
Wu
,
D. Z.
,
2021
, “
Investigation on Reduction of Pressure Fluctuation for a Double-Suction Centrifugal Pump
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
181
198
.10.1186/s10033-020-00505-8
22.
Li
,
Q. Q.
,
Zhao
,
G. S.
,
Wu
,
C. S.
,
Wu
,
P.
,
Wu
,
D. Z.
, and
Guo
,
C. L.
,
2020
, “
Investigation on the Energy Exchange Characteristics of the Regenerative Flow Pump in an Automobile Fuel System
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111206
.10.1115/1.4047803
23.
Li
,
Q. Q.
,
Wu
,
C. S.
,
Qian
,
B.
,
Wu
,
P.
,
Huang
,
B.
, and
Wu
,
D. Z.
,
2021
, “
Investigation of the Matching Relation Between Impeller and Flow Channel of Regenerative Flow Pumps
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061209
.10.1115/1.4050009
24.
Mao
,
X. L.
,
Pavesi
,
G.
,
Chen
,
D. Y.
,
Xu
,
H. S.
, and
Mao
,
G. J.
,
2019
, “
Flow Induced Noise Characterization of Pump Turbine in Continuous and Intermittent Load Rejection Processes
,”
Renewable Energy
,
139
, pp.
1029
1039
.10.1016/j.renene.2019.02.116
25.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
26.
Fleder
,
A.
, and
Böhle
,
M.
,
2015
, “
A Systematical Study of the Influence of Blade Length, Blade Width and Side Channel Height on the Performance of a Side Channel Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121102
.10.1115/1.4030897
27.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
28.
Zeng
,
Y. S.
,
Yao
,
Z. F.
,
Wang
,
F. J.
,
Xiao
,
R. F.
, and
He
,
C. L.
,
2020
, “
Experimental Investigation on Pressure Fluctuation Reduction in a Double Suction Centrifugal Pump: Influence of Impeller Stagger and Blade Geometry
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041202
.10.1115/1.4045208
29.
Zeng
,
G.
,
Li
,
Q.
,
Wu
,
P.
,
Qian
,
B.
,
Huang
,
B.
,
Li
,
S.
, and
Wu
,
D.
,
2020
, “
Investigation of the Impact of Splitter Blades on a Low Specific Speed Pump for Fluid-Induced Vibration
,”
J. Mech. Sci. Technol.
,
34
(
7
), pp.
2883
2893
.10.1007/s12206-020-0620-7
You do not currently have access to this content.