Abstract

Centrifugal pumps work in a wide range of conditions, often far from the design condition. The flow field can be characterized by large separations, vortex dynamics, and, in general, unsteady turbulent phenomena. Strongly off-design conditions are characterized by large separations that lead to efficiency loss, vibrations, and even to fatigue failure. Therefore, the capability to predict the flow field in these conditions is of great interest and computational fluid dynamics (CFD) can represent a viable solution, which can also complement or substitute experimental measurements. In this context, the Reynolds-averaged Navier–Stokes (RANS) approach allows to accurately simulate attached turbulent flows around complex geometries but it fails the prediction of massively separated flows, crucial for the off-design performance. To overcome this limitation, scale-resolving simulations based on the large eddy simulation (LES) can be used. However, their computational cost is too large for a routine use in industry. In centrifugal pumps, where the typical Reynolds number is in the range 105106, the use of a hybrid RANS–LES model or a wall modeled LES approach seems mandatory to improve the RANS accuracy and reduce the LES computational cost. In this work, an improved version of the extra-large eddy simulation (X-LES) model, the delayed X-LES or DX-LES model, is implemented in the open-source tool-box openfoam v.1812 and is assessed in the computation of the flow field through a centrifugal pump impeller, both at the design and one-quarter loads. The results are compared with experimental data and LES results available in literature.

References

1.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2015
, “
Large-Eddy Simulation of a Mixed-Flow Pump at Off-Design Conditions
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
101302
.10.1115/1.4030489
2.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2016
, “
Investigation of Separation Phenomena in a Radial Pump at Reduced Flow Rate by Large-Eddy Simulation
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121101
.10.1115/1.4033843
3.
Byskov
,
R. K.
,
Jacobsen
,
C. B.
, and
Pedersen
,
N.
,
2003
, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part II: Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
73
83
.10.1115/1.1524586
4.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
González
,
J.
, and
Fernandez
,
J.
,
2008
, “
The Effect of Impeller Cutback on the Fluid-Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111102
.10.1115/1.2969273
5.
De Donno
,
R.
,
Fracassi
,
A.
,
Ghidoni
,
A.
,
Morelli
,
A.
, and
Noventa
,
G.
,
2021
, “
Surrogate-Based Optimization of a Centrifugal Pump With Volute Casing for an Automotive Engine Cooling System
,”
Appl. Sci. (Switz.)
,
11
(
23
), p.
11470
.10.3390/app112311470
6.
De Donno
,
R.
,
Fracassi
,
A.
,
Noventa
,
G.
,
Ghidoni
,
A.
, and
Rebay
,
S.
,
2021
, “
Surrogate-Based Shape Optimization of Centrifugal Pumps for Automotive Engine Cooling Systems
,”
Comput. Methods Appl. Sci.
,
55
, pp.
277
290
.10.1007/978-3-030-57422-2
7.
De Donno
,
R.
,
Ghidoni
,
A.
,
Noventa
,
G.
, and
Rebay
,
S.
,
2019
, “
Shape Optimization of the ERCOFTAC Centrifugal Pump Impeller Using Open-Source Software
,”
Optim. Eng.
,
20
(
3
), pp.
929
953
.10.1007/s11081-019-09428-3
8.
Pedersen
,
N.
,
Larsen
,
P. S.
, and
Jacobsen
,
C. B.
,
2003
, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part I: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
61
72
.10.1115/1.1524585
9.
Kato
,
C.
,
Mukai
,
H.
, and
Manabe
,
A.
,
2003
, “
Large-Eddy Simulation of Unsteady Flow in a Mixed-Flow Pump
,”
Int. J. Rotating Mach.
,
9
(
5
), pp.
345
351
.10.1155/S1023621X03000320
10.
Feng
,
J.
,
Benra
,
F.-K.
, and
Dohmen
,
H.
,
2009
, “
Unsteady Flow Visualization at Part-Load Conditions of a Radial Diffuser Pump: By PIV and CFD
,”
J. Visualization
,
12
(
1
), pp.
65
72
.10.1007/BF03181944
11.
Lucius
,
A.
, and
Brenner
,
G.
,
2010
, “
Unsteady CFD Simulations of a Pump in Part Load Conditions Using Scale-Adaptive Simulation
,”
Int. J. Heat Fluid Flow
,
31
(
6
), pp.
1113
1118
.10.1016/j.ijheatfluidflow.2010.06.005
12.
Lucius
,
A.
, and
Brenner
,
G.
,
2011
, “
Numerical Simulation and Evaluation of Velocity Fluctuations During Rotating Stall of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081102
.10.1115/1.4004636
13.
Kok
,
J.
,
Dol
,
H.
,
Oskam
,
B.
, and
van der Ven
,
H.
,
2004
, “
Extra-Large Eddy Simulation of Massively Separated Flows
,”
AIAA Paper No. 2004-264.
14.
Bassi
,
F.
,
Colombo
,
A.
,
Massa
,
F.
,
Noventa
,
G.
, and
Ghidoni
,
A.
,
2020
, “
Hybrid RANS-LES Simulations With the Discontinuous Galerkin Method
,” Proceedings of the Sixth European Conference on Computational Mechanics: Solids, Structures and Coupled Problems (ECCM 2018) and Seventh European Conference on Computational Fluid Dynamics (
ECFD 2018
), Barcelona, Spain, June 11–15, pp.
4183
4193
.https://congress.cimne.com/eccm_ecfd2018/admin/files/fileabstract/a1715.pdf
15.
Bassi
,
F.
,
Botti
,
L.
,
Colombo
,
A.
,
Ghidoni
,
A.
,
Massa
,
F.
, and
Noventa
,
G.
,
2019
, “
On the Development of an Implicit High-Order Discontinuous Galerkin Solver for a Hybrid RANS-LES Model
,”
ERCOFTAC Ser.
,
25
, pp.
75
82
.10.1007/978-3-030-04915-7
16.
Yoshizawa
,
A.
, and
Horiuti
,
K.
,
1985
, “
A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows
,”
J. Phys. Soc. Jpn.
,
54
(
8
), pp.
2834
2839
.10.1143/JPSJ.54.2834
17.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
18.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.10.1007/s00162-006-0015-0
19.
Zhou
,
P.-J.
,
Wang
,
F.-J.
,
Yang
,
Z.-J.
, and
Mou
,
J.-G.
,
2017
, “
Investigation of Rotating Stall for a Centrifugal Pump Impeller Using Various SGS Models
,”
J. Hydrodyn., Ser. B
,
29
(
2
), pp.
235
242
.10.1016/S1001-6058(16)60733-3
20.
Huang
,
X.-B.
,
Liu
,
Z.-Q.
,
Li
,
Y.-J.
,
Yang
,
W.
, and
Guo
,
Q.
,
2019
, “
Study on the Internal Characteristics of Stall in a Centrifugal Pump by a Cubic Non-Linear SGS Model
,”
J. Hydrodyn.
,
31
(
4
), pp.
788
799
.10.1007/s42241-018-0170-y
21.
Yang
,
Z.
,
Wang
,
F.
, and
Zhou
,
P.
,
2012
, “
Evaluation of Subgrid-Scale Models in Large-Eddy Simulations of Turbulent Flow in a Centrifugal Pump Impeller
,”
Chin. J. Mech. Eng.
,
25
(
5
), pp.
911
918
.10.3901/CJME.2012.05.911
22.
Gritskevich
,
M.
,
Garbaruk
,
A.
,
Schütze
,
J.
, and
Menter
,
F.
,
2012
, “
Development of DDES and IDDES Formulations for the k ω Shear Stress Transport Model
,”
Flow, Turbul. Combust.
,
88
, pp.
431
449
.10.1007/s10494-011-9378-4
23.
Breuer
,
M.
,
Jovivcić
,
N.
, and
Mazaev
,
K.
,
2003
, “
Comparison of DES, RANS and LES for the Separated Flow Around a Flat Plate at High Incidence
,”
Int. J. Numer. Methods Fluids
,
41
(
4
), pp.
357
388
.10.1002/fld.445
24.
Reddy
,
K.
,
Ryon
,
J.
, and
Durbin
,
P.
,
2014
, “
A DDES Model With a Smagorinsky-Type Eddy Viscosity Formulation and Log-Layer Mismatch Correction
,”
Int. J. Heat Fluid Flow
,
50
, pp.
103
113
.10.1016/j.ijheatfluidflow.2014.06.002
25.
Lennemann
,
E.
, and
Howard
,
J.
,
1970
, “
Unsteady Flow Phenomena in Rotating Centrifugal Impeller Passages
,”
ASME J. Eng. Gas Turbines Power
,
92
(
1
), pp.
65
71
.10.1115/1.3445302
26.
Pacot
,
O.
,
Kato
,
C.
,
Guo
,
Y.
,
Yamade
,
Y.
, and
Avellan
,
F.
,
2016
, “
Large Eddy Simulation of the Rotating Stall in a Pump-Turbine Operated in Pumping Mode at a Part-Load Condition
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111102
.10.1115/1.4033423
27.
Cui
,
B.
,
Zhang
,
C.
,
Zhang
,
Y.
, and
Zhu
,
Z.
,
2020
, “
Influence of Cutting Angle of Blade Trailing Edge on Unsteady Flow in a Centrifugal Pump Under Off-Design Conditions
,”
Appl. Sci.
,
10
(
2
), p.
580
.10.3390/app10020580
28.
Beta CAE Systems ANSA
,” 20.1.1 ed., accessed Apr. 6, 2022, https://www.beta-cae.com/ansa.htm
29.
Celik
,
I.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
. 10.1115/1.2960953
You do not currently have access to this content.