Abstract

In this paper, analyze the influence of the stepped planning structure on the drag performance by observing waveform diagrams at the stern of the double M-ship and water–air and pressure distribution diagrams at the bottom of the ship. This study uses the combined stepped planning-air drag reduction technology to improve the sailing characteristics of the double M-ship. Research findings: The stepped planning contributes to a reduction in bottom pressure, enhances water–air distribution, and augments the amplitude of hull movement. Within the design speed range, the maximum drag reduction rate achieved by the stepped planning is 7.574%. However, this enhancement comes at the expense of increased viscous pressure resistance, which becomes the predominant resistance when sailing at full speed; Injecting air at the stepped planning can effectively reduce the viscous pressure resistance increased by the stepped planning. The combined drag reduction technology of stepped planning and air successfully realizes the total drag reduction at the double-M ship's high speed. The total resistance experienced when air is injected at the stepped planning is reduced by up to 20.981% compared to the original hull.

Four hull model drawings

Four hull model drawings

Close modal

References

1.
Li
,
S.
,
Zhang
,
J.
,
Jian
,
R.
,
Wang
,
S.
, and
Wang
,
B.
,
2022
, “
Research Progress of M-Type Structure and Hydrodynamic Performance
,”
Ship Eng.
,
44
(
6
), pp.
39
46
.
2.
Wang
et al.,
2023
, “
Review on Calculation Methods of Ship Resistance and Drag Reduction Technologies
,”
Ship Eng.
,
45
(
4
), pp.
66
78
.
3.
Madavan
,
N. K.
,
Deutsch
,
S.
, and
Merkle
,
C. L.
,
1984
, “
Reduction of Turbulent Skin Friction by Microbubbles
,”
Phys. Fluids
,
27
(
2
), pp.
356
363
.10.1063/1.864620
4.
Sindagi
,
S.
,
Vijayakumar
,
R.
, and
Saxena
,
B. K.
,
2020
, “
Parametric CFD Investigation of ALS Technique on Reduction in Drag of Bulk Carrier
,”
Ships Offshore Struct.
,
15
(
4
), pp.
417
430
.10.1080/17445302.2019.1661617
5.
Sindagi
,
S.
, and
Vijayakumar
,
R.
,
2021
, “
Succinct Review of MBDR/BDR Technique in Reducing Ship's Drag
,”
Ships Offshore Struct.
,
16
(
9
), pp.
968
979
.10.1080/17445302.2020.1790296
6.
Tanaka
,
T.
,
Oishi
,
Y.
,
Park
,
H. J.
,
Tasaka
,
Y.
,
Murai
,
Y.
, and
Kawakita
,
C.
,
2022
, “
Frictional Drag Reduction Caused by Bubble Injection in a Turbulent Boundary Layer Beneath a 36-m-Long Flat-Bottom Model Ship
,”
Ocean Eng.
,
252
, p.
111224
.10.1016/j.oceaneng.2022.111224
7.
Zhao
,
X.
, and
Zong
,
Z.
,
2022
, “
Experimental and Numerical Studies on the Air-Injection Drag Reduction of the Ship Model
,”
Ocean Eng.
,
251
, p.
111032
.10.1016/j.oceaneng.2022.111032
8.
Arndt
,
R. E. A.
,
Hambleton
,
W. T.
,
Kawakami
,
E.
, and
Amromin
,
E. L.
,
2009
, “
Creation and Maintenance of Cavities Under Horizontal Surfaces in Steady and Gust Flows
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111301
.10.1115/1.4000241
9.
Arslan
,
T.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
,
2015
, “
Investigation of the Flow Around Two Interacting Ship-Like Sections
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041205
.10.1115/1.4028876
10.
Yang
,
D.
,
Meneveau
,
C.
, and
Shen
,
L.
,
2013
, “
Dynamic Modelling of Sea-Surface Roughness for Large-Eddy Simulation of Wind Over Ocean Wavefield
,”
J. Fluid Mech.
,
726
, pp.
62
99
.10.1017/jfm.2013.215
11.
Myrhaug
,
D.
,
Leira
,
B. J.
, and
Chai
,
W.
,
2020
, “
Application of a Sea Surface Roughness Formula Using Joint Statistics of Significant Wave Height and Spectral Wave Steepness
,”
J. Ocean Eng. Mar. Energy
,
6
(
1
), pp.
91
97
.10.1007/s40722-020-00160-0
12.
He
,
T.
,
Victor
,
F. H.
,
Mo
,
S.
, and
Fang
,
E.
,
2021
, “
The Effect of Water Surface Roughness on the Measurement of Radiated Ship Noise
,”
Proc. Meet. Acoust.
, 40(1).10.1121/2.0001346
13.
Rajan
,
G. K.
, and
Henderson
,
D. M.
,
2016
, “
The Linear Stability of a Wavetrain Propagating on Water of Variable Depth
,”
SIAM J. Appl. Math.
,
76
(
5
), pp.
2030
2041
.10.1137/16M1055700
14.
Zheng
,
X.-L.
,
Jiao
,
J.
,
Wang
,
M.-Z.
, and
Liu
,
Tao.
,
2021
, “
Optimization Method for the Resistance Performance of a Double-Stepped Planning Hull
,”
Ship Sci. Technol.
,
43
(
4
), pp.
68
72
.10.3404/j.issn.1672-7649.2021.04.014
15.
Lotfi
,
P.
,
Ashrafizaadeh
,
M.
, and
Kowsari Esfahan
,
R.
,
2015
, “
Numerical Investigation of a Stepped Planning Hull in Calm Water
,”
Ocean Eng.
,
94
, pp.
103
110
.10.1016/j.oceaneng.2014.11.022
16.
Najafi
,
A.
,
Nowruzi
,
H.
,
Karami
,
M.
, and
Javanmardi
,
H.
,
2019
, “
Experimental Investigation of the Wetted Surfaces of Stepped Planning Hulls
,”
Ocean Eng.
,
187
, p.
106164
.10.1016/j.oceaneng.2019.106164
17.
Najafi
,
A.
,
Nowruzi
,
H.
,
Ameri
,
M. J.
, and
Karami
,
M.
,
2021
, “
An Experimental Study of the Wetted Surfaces of Two-Stepped Planning Hulls
,”
Ocean Eng.
,
222
, p.
108589
.10.1016/j.oceaneng.2021.108589
18.
Nowruzi
,
H.
,
2022
, “
Performance Prediction of Stepped Planning Hulls Using Experiment and ANNs
,”
Ocean Eng.
,
246
, p.
110660
.10.1016/j.oceaneng.2022.110660
19.
Hao
,
W. U.
,
Yongpeng
,
O. U.
, and
Qing
,
Y. E.
,
2019
, “
Experimental Study of Air Layer Drag Reduction on a Flat Plate and Bottom Hull of a Ship With Cavity
,”
Ocean Eng.
,
183
, pp.
236
248
.10.1016/j.oceaneng.2019.04.088
20.
Dong
,
W.
, and
Ou
,
Y.
,
2011
, “
Experimental Study on Resistance and Longitudinal Motion of High-Speed Air Cavity Craft
,”
J. Ship Mech.
,
9
(
15
), pp.
950
959
.
21.
Amromin
,
E. L.
,
Metcalf
,
B.
, and
Karafiath
,
G.
,
2011
, “
Synergy of Resistance Reduction Effects for a Ship With Bottom Air Cavity
,”
ASME J. Fluids Eng.
,
133
(
2
), p.
021302
.10.1115/1.4003422
22.
Zhang
,
Y. H.
,
2020
, “
Research on Darg-Reduction Principle and Hull Design of Double M-Ship Channel
,” MS thesis.
Qingdao University of Science and Technology
,
Shandong Province, China
.
23.
Yu
et al.,
2023
, “
On Assistance Reduction Mechanism of Stepped Double M-Hull Ship Based on Verification & Validation Method
,”
Ship Ocean Eng.
,
52
(
1
), pp.
50
55
.
24.
Ghassemi
,
H.
,
Kamarlouei
,
M.
, and
Veysi
,
S. T. G.
,
2015
, “
A Hydrodynamic Methodology and CFD Analysis for Performance Prediction of Stepped Planning Hulls
,”
Pol. Maritime Res.
,
22
(
2
), pp.
23
31
.10.1515/pomr-2015-0014
25.
Ao
,
Y.
,
Li
,
Y.
,
Gong
,
J.
, and
Li
,
S.
,
2022
, “
Artificial Intelligence Design for Ship Structures: A Variant Multiple-Input Neural Network-Based Ship Resistance Prediction
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091707
.10.1115/1.4053816
26.
Ozturk
,
D.
,
Delen
,
C.
,
Mancini
,
S.
,
Serifoglu
,
M. O.
, and
Hizarci
,
T.
,
2021
, “
Full-Scale CFD Analysis of Double-M Craft Seakeeping Performance in Regular Head Waves
,”
J. Mar. Sci. Eng.
,
9
(
5
), p.
504
.10.3390/jmse9050504
27.
Beji
,
S.
,
2020
, “
Formulation of Wave and Current Forces Acting on a Body and Resistance of Ships
,”
Ocean Eng.
,
218
, p.
108121
.10.1016/j.oceaneng.2020.108121
28.
Yao
,
J.
,
Su
,
Y.
,
Song
,
X.
,
Liu
,
Z.
,
Cheng
,
X.
, and
Zhan
,
C.
,
2020
, “
RANS Analysis of the Motions and Added Resistance for KVLCC2 in Head Regular Waves
,”
Appl. Ocean Res.
,
105
, p.
102398
.10.1016/j.apor.2020.102398
29.
Li
,
Y.
,
Li
,
A.
,
Gong
,
J.
,
Fu
,
Z.
, and
Dai
,
K.
,
2021
, “
Numerical Investigation on Added Resistance and Motions of a High-Speed Trimaran Equipped With T-Foil and Stern Flap in Regular Head and Oblique Waves for Varying Wave Steepness
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
, p.
451
.10.1007/s40430-021-03177-0
30.
Marr
,
G.
, and
Jackson
,
P. S.
,
1999
, “
Some Improvements and Comparisons in the Solution of the Neumann-Kelvin Problem
,”
J. Ship Research
,
43
(
3
), pp.
170
179
.10.5957/jsr.1999.43.3.170
31.
Yu
,
M.
, and
Falzarano
,
J.
,
2017
, “
A Comparison of the Neumann-Kelvin and Rankine Source Methods for Wave Resistance Calculations
,”
Ocean Syst. Eng.
,
7
(
4
), pp.
371
398
.10.12989/ose.2017.7.4.371
32.
Mao
,
X. F.
,
Yan
,
L.
,
Shen
,
X.
, and
Yu
,
Z.
,
2019
, “
Study on the Seakeeping of the Wave-Absorbing Double M-Craft in Waves Based on CFD
,”
ISOPE International Ocean and Polar Engineering Conference
, Honolulu, HI, June 16–21.
33.
Zhang
,
X.
,
Wang
,
J.
, and
Wan
,
D.
,
2021
, “
Euler–Lagrange Study of Bubble Breakup and Coalescence in a Turbulent Boundary Layer for Bubble Drag Reduction
,”
Phys. Fluids
,
33
(
3
), p.
37105
.10.1063/5.0037962
34.
Ariff
,
M.
,
Salim
,
S. M.
, and
Cheah
,
S. C.
,
2009
, “
Wall Y+ Approach for Dealing With Turbulent Flow Over a Surface Mounted Cube: Part 1–Low Reynolds Number
,”
Seventh International Conference on CFD in the Minerals and Process Industries
,
CSIRO Publishing
,
Melbourne, Australia
.
35.
Ariff
,
M.
,
Salim
,
S. M.
, and
Cheah
,
S. C.
,
2009
, “
Wall y+ Approach for Dealing With Turbulent Flow Over a Surface Mounted Cube: Part 2–High Reynolds Number
,”
Seventh International Conference on CFD in the Minerals and Process Industries CSIRO
, Vol.
9
,
CSIRO Publishing
,
Melbourne, Australia
.https://www.researchgate.net/publication/209105898_Wall_y_Approach_for_Dealing_with_Turbulent_Flows_over_a_Surface_Mounted_Cube_Part_2_-_High_Reynolds_Number
36.
Zhang
,
F.
,
Appiah
,
D.
,
Chen
,
K.
,
Yuan
,
S.
,
Adu-Poku
,
K. A.
, and
Wang
,
Y.
,
2020
, “
Dynamic Characterization of Vortex Structures and Their Evolution Mechanisms in a Side Channel Pump
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111502
.10.1115/1.4047808
37.
Lang
,
A. W.
, and
Thacker
,
W. D.
,
2008
, “
On the Interaction of Water Waves With a Surface-Parallel Vortex
,”
J. Fluids Eng.
, 130(5), p.
051302
.10.1115/1.2907430
38.
Sayyaadi
,
H.
, and
Nematollahi
,
M.
,
2013
, “
Determination of Optimum Injection Flow Rate to Achieve Maximum Microbubble Drag Reduction in Ships; an Experimental Approach
,”
Scientia Iranica
,
20
(
3
), pp.
535
541
.10.1016/j.scient.2013.05.001
39.
Tanaka
,
T.
,
Oishi
,
Y.
,
Park
,
H. J.
,
Tasaka
,
Y.
,
Murai
,
Y.
, and
Kawakita
,
C.
,
2021
, “
Repetitive Bubble Injection Promoting Frictional Drag Reduction in High-Speed Horizontal Turbulent Channel Flows
,”
Ocean Eng.
,
239
, p.
109909
.10.1016/j.oceaneng.2021.109909
40.
Wang
,
J.
,
Bielicki
,
S.
,
Kluwe
,
F.
,
Orihara
,
H.
,
Xin
,
G.
,
Kume
,
K.
,
Oh
,
S.
,
Liu
,
S.
, and
Feng
,
P.
,
2021
, “
Validation Study on a New Semi-Empirical Method for the Prediction of Added Resistance in Waves of Arbitrary Heading in Analyzing Ship Speed Trial Results
,”
Ocean Eng.
,
240
, p.
109959
.10.1016/j.oceaneng.2021.109959
You do not currently have access to this content.