Abstract

Structures with a partially overlapped status in water can be seen in some engineering applications, and the fluid-structure coupling vibration behavior of two partially overlapped identical plates has been studied previously through the experimental method. In this study, the added damping of the T(0,1) modes of two submerged partially overlapped plates is numerically investigated through the one-way fluid-structure interaction (FSI) method. The relevant numerical settings, like the mesh size, calculated periods, time-step size, and vibration amplitude, were tested first. Then, the numerical results were compared with experimental results, and good agreements were found. Finally, numerical results were analyzed. The vibration status of two plates in the joint abutting area or the overlapped area has an important influence on the added mass variation. When the added mass is higher, the phase difference between modal force and vibration displacement is also greater, which is the main reason for the higher added damping. The relationship between the phase difference and the frequency in water can be approximately fitted to a straight line, which can probably be used to predict the added damping variations caused by fluid boundary changes of submerged structures.

References

1.
Chen
,
S.
,
Wambsganss
,
M.
, and
Jendrzejczyk
,
J.
,
1976
, “
Added Mass and Damping of a Vibrating Rod in Confined Viscous Fluids
,”
ASME J. Appl. Mech.
, 43(2), pp.
325
329
.10.1115/1.3423833
2.
Kubota
,
Y.
, and
Suzuki
,
T.
,
1984
, “
Added Mass Effect on Disc Vibrating in Fluid
,”
Trans. Jpn. Soc. Mech. Eng.
,
50
(
449
), pp.
243
248
.10.1299/kikaic.50.243
3.
Lu
,
L.
,
Yang
,
Y. R.
,
Li
,
P.
, and
Zhang
,
M. L.
,
2011
, “
Added Mass, Added Stiffness and Added Damping Coefficients for a Parallel Plate-Type Structure
,”
Appl. Mech. Mater.
,
66–68
, pp.
1738
1742
.10.4028/www.scientific.net/AMM.66-68.1738
4.
Li
,
D.
,
Gong
,
R.
,
Wang
,
H.
,
Wei
,
X.
,
Liu
,
Z.
, and
Qin
,
D.
,
Harbin Institute of Technology
2016
, “
Analysis of Rotor-Stator Interaction in Turbine Mode of a Pump-Turbine Model
,”
J. Appl. Fluid Mech.
,
9
(
7
), pp.
2559
2568
.10.18869/acadpub.jafm.68.236.25086
5.
Li
,
H. D.
, and
He
,
L.
,
2005
, “
Blade Aerodynamic Damping Variation With Rotor-Stator Gap: A Computational Study Using Single-Passage Approach
,”
ASME J. Turbomach.
,
127
(
3
), pp.
573
579
.10.1115/1.1928932
6.
Rodriguez
,
C. G.
,
Egusquiza
,
E.
, and
Santos
,
I. F.
,
2007
, “
Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine
,”
ASME J. Fluids Eng.
,
129
(
11
), pp.
1428
1435
.10.1115/1.2786489
7.
Liang
,
Q. W.
,
Rodríguez
,
C. G.
,
Egusquiza
,
E.
,
Escaler
,
X.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2007
, “
Numerical Simulation of Fluid Added Mass Effect on a Francis Turbine Runner
,”
Comput. Fluids
,
36
(
6
), pp.
1106
1118
.10.1016/j.compfluid.2006.08.007
8.
Nennemann
,
B.
,
Monette
,
C.
, and
Chamberland-Lauzon
,
J.
,
2016
, “
Hydrodynamic Damping and Stiffness Prediction in Francis Turbine Runners Using CFD
,”
IOP Conference Series: Earth and Environmental Science
,
Grenoble, France, July
4
8
.10.1088/1755-1315/49/7/072006
9.
Rodriguez
,
C. G.
,
Egusquiza
,
E.
,
Escaler
,
X.
,
Liang
,
Q. W.
, and
Avellan
,
F.
,
2006
, “
Experimental Investigation of Added Mass Effects on a Francis Turbine Runner in Still Water
,”
J. Fluids Struct.
,
22
(
5
), pp.
699
712
.10.1016/j.jfluidstructs.2006.04.001
10.
Trivedi
,
C.
,
2017
, “
A Review on Fluid Structure Interaction in Hydraulic Turbines: A Focus on Hydrodynamic Damping
,”
Eng. Failure Anal.
,
77
, pp.
1
22
.10.1016/j.engfailanal.2017.02.021
11.
Green
,
C. P.
, and
Sader
,
J. E.
,
2005
, “
Frequency Response of Cantilever Beams Immersed in Viscous Fluids Near a Solid Surface With Applications to the Atomic Force Microscope
,”
J. Appl. Phys.
,
98
(
11
), p.
114913
.10.1063/1.2136418
12.
Sader
,
J. E.
,
1998
, “
Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Applications to the Atomic Force Microscope
,”
J. Appl. Phys.
,
84
(
1
), pp.
64
76
.10.1063/1.368002
13.
Escaler
,
X.
,
De La Torre
,
O.
, and
Goggins
,
J.
,
2017
, “
Experimental and Numerical Analysis of Directional Added Mass Effects in Partially Liquid-Filled Horizontal Pipes
,”
J. Fluids Struct.
,
69
, pp.
252
264
.10.1016/j.jfluidstructs.2017.01.001
14.
Gu
,
J.
,
Ma
,
T.
, and
Duan
,
M.
,
2016
, “
Effect of Aspect Ratio on the Dynamic Response of a Fluid-Conveying Pipe Using the Timoshenko Beam Model
,”
Ocean Eng.
,
114
, pp.
185
191
.10.1016/j.oceaneng.2016.01.021
15.
Atkinson
,
C.
, and
Manrique de Lara
,
M.
,
2007
, “
The Frequency Response of a Rectangular Cantilever Plate Vibrating in a Viscous Fluid
,”
J. Sound Vib.
,
300
(
1–2
), pp.
352
367
.10.1016/j.jsv.2006.08.011
16.
Kwak
,
M. K.
,
1996
, “
Hydroelastic Vibration of Rectangular Plates
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
110
115
.10.1115/1.2787184
17.
Presas
,
A.
,
Valentin
,
D.
,
Valero
,
C.
,
Egusquiza
,
M.
, and
Egusquiza
,
E.
,
2019
, “
Experimental Measurements of the Natural Frequencies and Mode Shapes of Rotating Disk-Blades-Disk Assemblies From the Stationary Frame
,”
Appl. Sci.
,
9
(
18
), p.
3864
.10.3390/app9183864
18.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
, and
Valero
,
C.
,
2014
, “
Experimental Study on the Added Mass and Damping of a Disk Submerged in a Partially Fluid-Filled Tank With Small Radial Confinement
,”
J. Fluids Struct.
,
50
, pp.
1
17
.10.1016/j.jfluidstructs.2014.06.006
19.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
,
Valero
,
C.
, and
Egusquiza
,
M.
,
2017
, “
Experimental Study of a Vibrating Disk Submerged in a Fluid-Filled Tank and Confined With a Nonrigid Cover
,”
ASME J. Vib. Acoust.
,
139
(
2
), p. 021005.10.1115/1.4035105
20.
Escaler
,
X.
,
Hütter
,
J. K.
,
Egusquiza
,
E.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2010
, “
Modal Behavior of a Reduced Scale Pump-Turbine Impeller. Part 1: Experiments
,”
IOP Conference Series: Earth and Environmental Science
, Timisoara, Romania, Sept.
20
24
.10.1088/1755-1315/12/1/012116
21.
Trivedi
,
C.
, and
Cervantes
,
M. J.
,
2017
, “
Fluid-Structure Interactions in Francis Turbines: A Perspective Review
,”
Renewable Sustainable Energy Rev.
,
68
, pp.
87
101
.10.1016/j.rser.2016.09.121
22.
Valero
,
C.
,
Huang
,
X.
,
Egusquiza
,
E.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2010
, “
Modal Behavior of a Reduced Scale Pump Turbine Impeller. Part II: Numerical Simulation
,”
IOP Conference Series: Earth and Environmental Science
, Timişoara, Romania, Sept.
20
24
.10.1088/1755-1315/12/1/012117
23.
Jeong
,
K.-H.
,
2003
, “
Free Vibration of Two Identical Circular Plates Coupled With Bounded Fluid
,”
J. Sound Vib.
,
260
(
4
), pp.
653
670
.10.1016/S0022-460X(02)01012-X
24.
Jeong
,
K.-H.
,
Yoo
,
G.-H.
, and
Lee
,
S.-C.
,
2004
, “
Hydroelastic Vibration of Two Identical Rectangular Plates
,”
J. Sound Vib.
,
272
(
3–5
), pp.
539
555
.10.1016/S0022-460X(03)00383-3
25.
Kimber
,
M.
,
Lonergan
,
R.
, and
Garimella
,
S.
,
2009
, “
Experimental Study of Aerodynamic Damping in Arrays of Vibrating Cantilevers
,”
J. Fluids Struct.
,
25
(
8
), pp.
1334
1347
.10.1016/j.jfluidstructs.2009.07.003
26.
Zhang
,
M.
,
Valentín
,
D.
,
Valero
,
C.
,
Chen
,
Q.-G.
, and
Li
,
X.
,
2023
, “
Experimental and Numerical Investigation on the Dynamic Behavior of Two Partially Overlapped Identical Plates Submerged in Water
,”
Ocean Eng.
,
280
, p.
114319
.10.1016/j.oceaneng.2023.114319
27.
Madenci
,
E.
, and
Guven
,
I.
,
2015
,
The Finite Element Method and Applications in Engineering Using ANSYS®
,
Springer
,
Berlin
.
28.
Monette
,
C.
,
Nennemann
,
B.
,
Seeley
,
C.
,
Coutu
,
A.
, and
Marmont
,
H.
,
2014
, “
Hydro-Dynamic Damping Theory in Flowing Water
,”
IOP Conf. Ser.: Earth Environ. Sci.
, 22, p. 03204410.1088/1755-1315/22/3/032044.
29.
Zeng
,
Y.
,
Yao
,
Z.
,
Gao
,
J.
,
Hong
,
Y.
,
Wang
,
F.
, and
Zhang
,
F.
,
2019
, “
Numerical Investigation of Added Mass and Hydrodynamic Damping on a Blunt Trailing Edge Hydrofoil
,”
ASME J. Fluids Eng.
,
141
(
8
), p. 081108.10.1115/1.4042759
30.
Liaghat
,
T.
,
Guibault
,
F.
,
Allenbach
,
L.
, and
Nennemann
,
B.
,
2014
, “
Two-Way Fluid-Structure Coupling in Vibration and Damping Analysis of an Oscillating Hydrofoil
,”
ASME
Paper No. IMECE2014-38441.10.1115/IMECE2014-38441
31.
Tengs
,
E.
,
Bergan
,
C.
,
Jakobsen
,
K.
, and
Storli
,
P.
,
2019
, “
Numerical Simulation of the Hydrodynamic Damping of a Vibrating Hydrofoil
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
240, p.
062002
.10.1088/1755-1315/240/6/062002
32.
Gauthier
,
J. P.
,
Giroux
,
A. M.
,
Etienne
,
S.
, and
Gosselin
,
F. P.
,
2017
, “
A Numerical Method for the Determination of Flow-Induced Damping in Hydroelectric Turbines
,”
J. Fluids Struct.
,
69
, pp.
341
354
.10.1016/j.jfluidstructs.2017.01.004
33.
Hosaka
,
H.
, and
Itao
,
K.
,
2002
, “
Coupled Vibration of Microcantilever Array Induced by Airflow Force
,”
ASME J. Vib. Acoust
,
124
(
1
), pp.
26
32
.10.1115/1.1421054
34.
Siemens
,
P.
,
2019
, “
Software (2014). LMS Test. Lab, Powering Testing Productivity
,” DTA Engineering, Bursa, Turkey, accessed June 3, 2023, http://www.dta.com.tr/pdf/brosur/siemens_lms/Siemens-PLM-LMS-Test-Lab_brosur.pdf
35.
Zobeiri
,
A.
,
Ausoni
,
P.
,
Avellan
,
F.
, and
Farhat
,
M.
,
2012
, “
How Oblique Trailing Edge of a Hydrofoil Reduces the Vortex-Induced Vibration
,”
J. Fluids Struct.
,
32
, pp.
78
89
.10.1016/j.jfluidstructs.2011.12.003
You do not currently have access to this content.