Abstract

Existing analytical flow models for predicting flow rates at microscale seal displacements are limited to two separate domains. The first assumes a small channel length to height aspect ratio at relatively large seal displacements. The second assumes a large channel length to height aspect ratio at relatively small seal displacements. A piecewise analytical model for compressible flow is developed here to enable predicting flow rates in valves with fluid pathways of any aspect ratio. The new model is validated by numerical studies and experiment. The results are applicable to flat valve seals having a cylindrical seal boss feature with fluid passage length to height aspect ratios ranging from 3.3 to 800. The new model is particularly useful for the design of microvalves and macroscale valves with small actuator displacements.

References

1.
Oh
,
K. W.
, and
Ahn
,
C. H.
,
2006
, “
A Review of Microvalves
,”
J. Micromech. Microeng.
,
16
(
5
), pp.
R13
R39
.10.1088/0960-1317/16/5/R01
2.
Smal
,
O.
,
Raucent
,
B.
, and
Jeanmart
,
H.
,
2009
, “
Fluid Flow Modelling of a Micro-Valve
,”
Int. J. Simul. Multidiscip. Des. Optim.
,
3
(
2
), pp.
356
362
.10.1051/ijsmdo:2009011
3.
Smal
,
O.
,
Raucent
,
B.
,
Ceyssens
,
F.
,
Puers
,
R.
,
De Volder
,
M.
, and
Reynaerts
,
D.
,
2008
, “
Design and Testing of an Ortho-Planar Micro-Valve
,” Confirmation of Large-Periphery Compressible Gas Flow Model for Microvalves, Vol. 4,
4th International Precision Assembly Seminar
, Chamonix, France, Feb. 10–13
, pp.
75
86
.10.1007/978-0-387-77405-3_7
4.
Lynch
,
B. A.
,
Jamieson
,
B. G.
,
Roman
,
P. A.
, and
Zakrzwski
,
C. M.
,
2005
, “
An Empirical Study of Boss/Seat Materials and Geometries for Ultra Low-Leakage MEMS Micro-Valves
,”
ASME
Paper No. IMECE2005-81082. 10.1115/IMECE2005-81082
5.
Park
,
J. M.
,
Evans
,
A. T.
,
Rasmussen
,
K.
,
Brosten
,
T. R.
,
Nellis
,
G. F.
,
Klein
,
S. A.
, and
Gianchandani
,
Y. B.
,
2009
, “
A Microvalve With Integrated Sensors and Customizable Normal State for Low-Temperature Operation
,”
J. Microelectromech. Syst.
,
18
(
4
), pp.
868
877
.10.1109/JMEMS.2009.2021097
6.
Marie
,
C.
, and
Lasseux
,
D.
,
2007
, “
Experimental Leak-Rate Measurement Through a Static Metal Seal
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
799
805
.10.1115/1.2734250
7.
Johnson
,
C.
,
Khodadadi
,
J.
, and
Yang
,
E.
,
2006
, “
Modeling of Frictional Gas Flow Effects in a Piezoelectrically Actuated Low Leak-Rate Microvalve Under High-Pressure Conditions
,”
J. Micromech. Microeng.
,
16
(
12
), pp.
2771
2782
.10.1088/0960-1317/16/12/034
8.
Tang
,
W.
,
Chakraborty
,
I.
, and
Pyle
,
D.
,
1998
, “
Deep Reactive-Ion Etched Micro Valves for Spacecraft Propulsion
,” Version V1,
Jet Propulsion Laboratory
, https://hdl.handle.net/2014/20661.
9.
van der Wijngaart
,
W.
,
Thorsen
,
A.
, and
Stemme
,
G.
,
2005
, “
A Seat Microvalve Nozzle for Optimal Gas-Flow Capacity at Large-Controlled Pressure
,”
J. Microelectromech. Syst.
,
14
(
2
), pp.
200
206
.10.1109/JMEMS.2004.839018
10.
Gradin
,
H.
,
Braun
,
S.
,
Stemme
,
G.
, and
van der Wijngaart
,
W.
,
2012
, “
SMA Microvalves for Very Large Gas Flow Control Manufactured Using Wafer-Level Eutectic Bonding
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4895
4906
.10.1109/TIE.2011.2173892
11.
Pan
,
C.-P.
, and
Wang
,
D.-H.
,
2016
, “
Modeling and Experimental Verification of the Flow Characteristics of an Active Controlled Microfluidic Valve With Annular Boundary
,”
J. Intell. Mater. Syst. Struct.
,
27
(
16
), pp.
2237
2248
.10.1177/1045389X15624801
12.
White
,
F. M.
,
2008
,
Fluid Mechanics
, 6th ed.,
McGraw-Hill
,
Boston, MA
, pp.
617
618
.
13.
Henning
,
A. K.
,
2004
, “
Confirmation of Large-Periphery Compressible Gas Flow Model for Microvalves
,” MEMS/MOEMS Components and Their Applications, Vol. 5344,
International Society for Optics and Photonics
, San Jose, CA, Jan. 26–27, pp. 155–162.10.1117/12.532665
14.
Henning
,
A. K.
,
2003
, “
Improved Gas Flow Model for Microvalves
,”
12th International Conference on Solid-State Sensors, Actuators and Microsystems (
TRANSDUCERS 03
), Boston, MA, June 8–12
, pp.
1550
1553
.10.1109/SENSOR.2003.1217074
15.
Henning
,
A. K.
,
2000
, “
Compact Pressure-and Structure-Based Gas Flow Model for Microvalves
,” Materials and Device Characterization in Micromachining III, Vol. 4175,
International Society for Optics and Photonics
, Santa Clara, CA, Sep. 18–19, pp.
74
81
.10.1117/12.395614
16.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
,
1997
, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
167
178
.10.1109/84.585795
17.
Agrawal
,
A.
,
2011
, “
A Comprehensive Review on Gas Flow in Microchannels
,”
Int. J. Micro-Nano Scale Transp.
,
2
(
1
), pp.
1
40
.10.1260/1759-3093.2.1.1
18.
Cavazzuti
,
M.
,
Corticelli
,
M. A.
, and
Karayiannis
,
T. G.
,
2019
, “
Compressible Fanno Flows in Micro-Channels: An Enhanced Quasi-2D Numerical Model for Laminar Flows
,”
Therm. Sci. Eng. Prog.
,
10
, pp.
10
26
.10.1016/j.tsep.2019.01.003
19.
Asako
,
Y.
,
Pi
,
T.
,
Turner
,
S. E.
, and
Faghri
,
M.
,
2003
, “
Effect of Compressibility on Gaseous Flows in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
46
(
16
), pp.
3041
3050
.10.1016/S0017-9310(03)00074-7
20.
Fazal
,
I.
, and
Elwenspoek
,
M. C.
,
2007
, “
Design and Analysis of a High Pressure Piezoelectric Actuated Microvalve
,”
J. Micromech. Microeng.
,
17
(
11
), pp.
2366
2379
.10.1088/0960-1317/17/11/026
21.
Barber
,
R.
, and
Emerson
,
D.
,
2002
, “
The Influence of Knudsen Number on the Hydrodynamic Development Length Within Parallel Plate Micro-Channels
,”
Advances in Fluid Mechanics IV, 4th International Conference on Advances in Fluid Mechanics
, Ghent, Belgium, May, pp. 207–216.https://www.researchgate.net/publication/30409224_The_influence_of_Knudsen_number_on_the_hydrodynamic_development_length_within_parallel_plate_micro-channels
22.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables-Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.10.1115/1.2184352
23.
Evgenevna
,
I. E.
,
Evgenevna
,
I. T.
, and
Viktorovich
,
B. P.
,
2014
, “
Analysis of the Application of Turbulence Models in the Calculation of Supersonic Gas Jet
,”
Am. J. Appl. Sci.
,
11
(
11
), pp.
1914
1920
.10.3844/ajassp.2014.1914.1920
24.
ISO 6358:1989(E)
,
1989
,
Pneumatic Fluid Power - Components Using Compressible Fluids - Determination of Flow-Rate Characteristics
,
International Organization for Standardization
,
Geneva, CH
.
You do not currently have access to this content.