Abstract

Fluidic oscillators utilize internal flow dynamics to produce oscillatory fluid jets. The Coanda surface in the mixing chamber of a fluidic oscillator plays a critical role by facilitating controlled fluid manipulation through flow attachment and redirection. The mixing chamber pressure drop, jet oscillating frequency, and deflection angles are hence dependent on the geometry of the Coanda surface. In this study, the Coanda surface is modified by using rectangular ribs of different aspect ratios. The effects of ribbed Coanda surface on oscillating jet characteristics are computed numerically through two-dimensional unsteady Favre-averaged Navier–Stokes equations. The aspect ratio (ARribs), the ratio of rib height to rib base, is varied from 0.64 to 1.56 and air is used as a working fluid. An increase in the ARribs increases the jet oscillation frequency. The highest aspect ratio achieves an oscillation frequency of 820 Hz, contrasting with 355 Hz for the smooth case. On the other hand, the jet deflection angles are decreased as the aspect ratio increases. Interestingly the introduction of the ribs on the Coanda surface decreased the pressure drop in the oscillator. A decrease in pressure drop of 22% for an aspect ratio of 1.56 was achieved as compared to the smooth case. These results are attributed to the influence of the ribs on the formation of a separation bubble formed in the mixing chamber. The jet performance parameter, frequency-deflection-pressure ratio, was found to be 43% higher for ARribs of 1.56 as compared to the smooth case.

References

1.
Wongcharee
,
K.
,
Kunnarak
,
K.
,
Chuwattanakul
,
V.
, and
Eiamsa-Ard
,
S.
,
2020
, “
Heat Transfer Rate of Swirling Impinging Jets Issuing From a Twisted Tetra-Lobed Nozzle
,”
Case Stud. Therm. Eng.
,
22
, p.
100780
.10.1016/j.csite.2020.100780
2.
Fénot
,
M.
,
Dorignac
,
E.
, and
Lantier
,
R.
,
2021
, “
Heat Transfer and Flow Structure of a Hot Annular Impinging Jet
,”
Int. J. Therm. Sci.
,
170
, p.
107091
.10.1016/j.ijthermalsci.2021.107091
3.
Gil
,
P.
, and
Wilk
,
J.
,
2020
, “
Heat Transfer Coefficients During the Impingement Cooling With the Use of Synthetic Jet
,”
Int. J. Therm. Sci.
,
147
, p.
106132
.10.1016/j.ijthermalsci.2019.106132
4.
Tang
,
C.
,
Zhang
,
J. Z.
,
Lyu
,
Y. W.
, and
Tan
,
X. M.
,
2020
, “
Convective Heat Transfer on a Flat Target Surface Impinged by Pulsating Jet With an Additional Transmission Chamber
,”
Heat Mass Transfer
,
56
(
1
), pp.
183
205
.10.1007/s00231-019-02702-1
5.
Hussain
,
L.
,
Khan
,
M. M.
,
Masud
,
M.
,
Ahmed
,
F.
,
Rehman
,
Z.
,
Amanowicz
,
Ł.
, and
Rajski
,
K.
,
2021
, “
Heat Transfer Augmentation Through Different Jet Impingement Techniques: A State-of-the-Art Review
,”
Energies
,
14
(
20
), pp.
6458
42
.10.3390/en14206458
6.
Gregory
,
J.
, and
Tomac
,
M. N.
,
2013
, “
A Review of Fluidic Oscillator Development
,” AIAA Paper No. 2013-2474. 10.2514/6.2013-2474
7.
Raghu
,
S.
,
2013
, “
Fluidic Oscillators for Flow Control
,”
Exp. Fluids
,
54
(
2
), p.
1455
.10.1007/s00348-012-1455-5
8.
Wassermann
,
F.
,
Hecker
,
D.
,
Jung
,
B.
,
Markl
,
M.
,
Seifert
,
A.
, and
Grundmann
,
S.
,
2013
, “
Phase-Locked 3D3C-MRV Measurements in a Bi-Stable Fluidic Oscillator
,”
Exp. Fluids
,
54
(
3
), pp.
1
15
.10.1007/s00348-013-1487-5
9.
Bobusch
,
B. C.
,
Woszidlo
,
R.
,
Bergada
,
J. M.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
Experimental Study of the Internal Flow Structures Inside a Fluidic Oscillator
,”
Exp. Fluids
,
54
(
6
), pp.
1
12
.10.1007/s00348-013-1559-6
10.
Stouffer
,
R. D.
,
1979
, “
Oscillating Spray Device
”, U.S. Patent No. 4,151,955.
11.
Greenblatt
,
D.
,
Whalen
,
E. A.
, and
Wygnanski
,
I. J.
,
2019
, “
Introduction to the Flow Control Virtual Collection
,”
AIAA J.
,
57
(
8
), pp.
3111
3114
.10.2514/1.J058507
12.
Luo
,
X.
,
Sun
,
B.
, and
Wang
,
X.
,
2017
, “
Experimental Investigation on a Cavity-Step-Actuated Supersonic Oscillating Jet
,”
Chin. J. Aeronaut.
,
30
(
1
), pp.
274
281
.10.1016/j.cja.2016.12.010
13.
Cerretelli
,
C.
, and
Kirtley
,
K.
,
2009
, “
Boundary Layer Separation Control With Fluidic Oscillators
,”
ASME J. Turbomach.
,
131
(
4
), p.
041001
.10.1115/1.3066242
14.
Schmidt
,
H. J.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2017
, “
Separation Control With Fluidic Oscillators in Water
,”
Exp. Fluids
,
58
(
10
), p.
106
.10.1007/s00348-017-2392-0
15.
Kara
,
K.
,
Kim
,
D.
, and
Morris
,
P. J.
,
2018
, “
Flow-Separation Control Using Sweeping Jet Actuator
,”
AIAA J.
,
56
(
11
), pp.
4604
4613
.10.2514/1.J056715
16.
Raman
,
G.
, and
Raghu
,
S.
,
2004
, “
Cavity Resonance Suppression Using Miniature Fluidic Oscillators
,”
AIAA J.
,
42
(
12
), pp.
2608
2612
.10.2514/1.521
17.
Madadkon
,
H.
,
Fadaie
,
A.
, and
Nili-Ahmadabadi
,
M.
,
2012
, “
Experimental and Numerical Investigation of Unsteady Turbulent Flow in a Fluidic Oscillator Flow Meter With Extraction of Characteristics Diagrams
,”
Modares J. Mech. Eng.
,
12
(
5
), pp.
30
42
.
18.
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2012
, “
Increasing the Passive Scalar Mixing Quality of Jets in Crossflow With Fluidics Actuators
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021503
.10.1115/1.4004373
19.
Ten
,
J. S.
, and
Povey
,
T.
,
2019
, “
Self-Excited Fluidic Oscillators for Gas Turbines Cooling Enhancement: Experimental and Computational Study
,”
J. Thermophys. Heat Transfer
,
33
(
2
), pp.
536
547
.10.2514/1.T5261
20.
Zhou
,
W.
,
Yuan
,
L.
,
Liu
,
Y.
,
Peng
,
D.
, and
Wen
,
X.
,
2019
, “
Heat Transfer of a Sweeping Jet Impinging at Narrow Spacings
,”
Exp. Therm. Fluid Sci.
,
103
, pp.
89
98
.10.1016/j.expthermflusci.2019.01.007
21.
Hussain
,
L.
, and
Khan
,
M. M.
,
2022
, “
Recent Progress in Flow Control and Heat Transfer Enhancement of Impinging Sweeping Jets Using Double Feedback Fluidic Oscillators: A Review
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
12
), p.
120802
.10.1115/1.4055673
22.
Bobusch
,
B. C.
,
Kr
,
O.
, and
Paschereit
,
C. O.
,
2013
, “
Numerical Investigations on Geometric Parameters Affecting the Oscillation Properties of a Fluidic Oscillator
,” AIAA Paper No. 2013-2709. 10.2514/6.2013-2709
23.
Baghaei
,
M.
, and
Bergada
,
J. M.
,
2020
, “
Fluidic Oscillators, the Effect of Some Design Modifications
,”
Appl. Sci.
,
10
(
6
), p.
2105
.10.3390/app10062105
24.
Woszidlo
,
R.
,
Ostermann
,
F.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
The Time-Resolved Natural Flow Field of a Fluidic Oscillator
,”
Exp. Fluids
,
56
(
6
), pp.
1
12
.10.1007/s00348-015-1993-8
25.
Slupski
,
B. J.
, and
Kara
,
K.
,
2016
, “
Effects of Geometric Parameters on Performance of Sweeping Jet Actuator
,” AIAA Paper No. 2016-3263. 10.2514/6.2016-3263
26.
Sang
,
Y.
,
Shan
,
Y.
,
Lei
,
H.
,
Tan
,
X.
, and
Zhang
,
J.
,
2020
, “
Effects of Geometric Parameters on the Physical Mechanisms of Supersonic Fluidic Oscillators
,”
Energies
,
13
(
15
), p.
3919
.10.3390/en13153919
27.
Koklu
,
M.
,
2018
, “
Effects of Sweeping Jet Actuator Parameters on Flow Separation Control
,”
AIAA J.
,
56
(
1
), pp.
100
110
.10.2514/1.J055796
28.
Jeong
,
H. S.
, and
Kim
,
K. Y.
,
2018
, “
Shape Optimization of a Feedback-Channel Fluidic Oscillator
,”
Eng. Appl. Comput. Fluid Mech.
,
12
(
1
), pp.
169
181
.10.1080/19942060.2017.1379441
29.
Bergadà
,
J. M.
,
Baghaei
,
M.
,
Prakash
,
B.
, and
Mellibovsky
,
F.
,
2021
, “
Fluidic Oscillators, Feedback Channel Effect Under Compressible Flow Conditions
,”
Sensors
,
21
(
17
), pp.
5768
5723
.10.3390/s21175768
30.
Tajik
,
A.
,
Kara
,
K.
, and
Parezanovic
,
V.
,
2021
, “
Sensitivity of a Fluidic Oscillator to Modifications of Feedback Channel and Mixing Chamber Geometry
,”
Exp. Fluids
,
62
(
12
), pp.
1
19
.10.1007/s00348-021-03342-0
31.
Hossain
,
M. A.
,
Prenter
,
R.
,
Agricola
,
L. M.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
,
Bons
,
J. P.
, and
Researcher
,
P.
,
2017
, “
Effects of Roughness on the Performance of Fluidic
,” AIAA Paper No. 2017-0770. 10.2514/6.2017-0770
32.
Kara
,
K.
,
2015
, “
Numerical Study of Internal Flow Structures in a Sweeping Jet Actuator
,” AIAA Paper No. 2015-2424. 10.2514/6.2015-2424
33.
Jurewicz
,
B.
, and
Kara
,
K.
,
2017
, “
Effects of Feedback Channels and Coanda Surfaces on the Performance of Sweeping Jet Actuator
,” AIAA Paper No. 2017-0488. 10.2514/6.2017-0488
34.
Slupski
,
B. J.
,
Tajik
,
A. R.
,
Parezanović
,
V. B.
, and
Kara
,
K.
,
2019
, “
On the Impact of Geometry Scaling and Mass Flow Rate on the Frequency of a Sweeping Jet Actuator
,”
FME Trans.
,
47
(
3
), pp.
599
607
.10.5937/fmet1903599S
35.
Oz
,
F.
, and
Kara
,
K.
,
2020
, “
Jet Oscillation Frequency Characterization of a Sweeping Jet Actuator
,”
Fluids
,
5
(
2
), p.
72
.10.3390/fluids5020072
36.
Alam
,
M.
, and
Kara
,
K.
,
2022
, “
The Influence of Exit Nozzle Geometry on Sweeping Jet Actuator Performance
,”
Fluids
,
7
(
2
), p.
69
.10.3390/fluids7020069
37.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.
38.
Pandey
,
R. J.
, and
Kim
,
K.
,
2018
, “
Numerical Modeling of Internal Flow in a Fluidic Oscillator
,”
J. Mech. Sci. Technol.
,
32
(
3
), pp.
1041
1048
.10.1007/s12206-018-0205-x
39.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
Experimental Comparison Between the Flow Field of Two Common Fluidic Oscillator Designs
,” AIAA Paper No. 2015-0781. 10.2514/6.2015-0781
You do not currently have access to this content.