Abstract

The purpose of this work is to investigate the stability of pure (emulsifier-free) oil-water emulsion in a gravity-based separator as a function of various parameters such as mixing speed, water volume concentration, temperature, and appearance. Only simple fluids (ExxsolTMD110 and distilled water) were used to form the dispersion in a separator of operational volume 200 ml and internal diameter of 60 mm. Data were gathered from a portable dispersion characterization rig where videos of liquid phase separation can be saved and scanned. The study considered a wide range of mixing speeds between 600 rpm and 2500 rpm, with elevated temperatures of 60 °C and 80 °C. Both types (oil-in-water (O/W) and water-in-oil (W/O)) of pure emulsion were studied. In addition, two volumetric water concentrations (WCs) were considered for each type to investigate its stability under the parameters tested (i.e., 25% and 50% WC for W/O emulsion and 75% and 90% WC for O/W emulsion). The stability of the emulsion was examined in terms of the separation profiles of the water and oil phase, oil/water mixture volume, initiation time of free phase separation and/or the final time of separation. Mixing speed was shown to drastically impact the stability of O/W emulsion, from a few minutes to over 4 h. Conversely, insignificant effects of mixing speed were seen for W/O emulsion as the emulsions overall separated in a few seconds. Although temperature accelerated the oil separation rates of 75% WC emulsions, it delayed the initiation time of water separation.

References

1.
Kennedy
,
J. F.
, and
Norris
,
T. A.
,
1999
,
Modern Aspects of Emulsion Science
,
B. P.
Binks
, ed.,
The Royal Society of Chemistry
,
London
.
2.
Tadros
,
T. F.
,
2005
,
Applied Surfactants, Principles and Applications
,
Wiley
, Hoboken, NJ.
3.
Tadros
,
T. F.
,
2013
,
Emulsion Formation and Stability
,
Wiley Inc
., Hoboken, NJ.
4.
Gavrielatos
,
I.
,
Dabirian
,
R.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2018
, “
Oil/Water Emulsions Stabilized by Nanoparticles of Different Wettabilities
,”
ASME J. Fluids Eng.
,
141
(
2
) p.
021301
.10.1115/1.4040465
5.
Wong
,
S. F.
,
Lim
,
J. S.
, and
Dol
,
S. S.
,
2015
, “
Crude Oil Emulsion: A Review on Formation, Classification and Stability of Water-in-Oil Emulsions
,”
J. Pet. Sci. Eng.
,
135
, pp.
498
504
.10.1016/j.petrol.2015.10.006
6.
Mashhadi
,
S.
,
Javadian
,
H.
,
Tyagi
,
I.
,
Agarwal
,
S.
, and
Gupta
,
V. K.
,
2016
, “
The Effect of Na2SO4 Concentration in Aqueous Phase on the Phase Inversion Temperature of Lemon Oil in Water Nano-Emulsions
,”
J. Mol. Liq.
,
215
, pp.
454
460
.10.1016/j.molliq.2016.01.045
7.
Moradi
,
M.
,
Kazempour
,
M.
,
French
,
J. T.
, and
Alvarado
,
V.
,
2014
, “
Dynamic Flow Response of Crude Oil-in-Water Emulsion During Flow Through Porous Media
,”
Fuel
,
135
, pp.
38
45
.10.1016/j.fuel.2014.06.025
8.
Walstra
,
P.
,
1993
, “
Principles of Emulsion Formation
,”
Chem. Eng. Sci.
,
48
(
2
), pp.
333
349
.10.1016/0009-2509(93)80021-H
9.
Lee
,
G.
,
2004
, “
Physical Chemistry of Foods: By Pieter Walstra
,”
Food Science and Technology
; Vol.
121
;
Marcel Dekker
,
New York, Basel
, 2003.
10.
Jeelani
,
S. A. K.
, and
Hartland
,
S.
,
1998
, “
Effect of Dispersion Properties on the Separation of Batch Liquid-Liquid Dispersions
,”
Ind. Eng. Chem. Res.
, 37(2), pp.
547
554
.10.1021/ie970545a
11.
Jeelani
,
S. A. K.
,
Panoussopoulos
,
K.
, and
Hartland
,
S.
,
1999
, “
Effect of Turbulence on the Separation of Liquid-Liquid Dispersions in Batch Settlers of Different Geometries
,”
Ind. Eng. Chem. Res.
,
38
(
2
), pp.
493
501
.10.1021/ie980436b
12.
Henschke
,
M.
,
Schlieper
,
L. H.
, and
Pfennig
,
A.
,
2002
, “
Determination of a Coalescence Parameter From Batch-Settling Experiments
,”
Chem. Eng. J.
,
85
(
2–3
), pp.
369
378
.10.1016/S1385-8947(01)00251-0
13.
Yu
,
G. Z.
, and
Mao
,
Z. S.
,
2004
, “
Sedimentation and Coalescence Profiles in Liquid-Liquid Batch Settling Experiments
,”
Chem. Eng. Technol.
,
27
(
4
), pp.
407
413
.10.1002/ceat.200401884
14.
Thaker
,
A. H.
, and
Buwa
,
V. V.
,
2020
, “
Separation of Liquid–Liquid Dispersion in a Batch Settler: CFD-PBM Simulations Incorporating Interfacial Coalescence
,”
AIChE J.
,
66
(
11
), pp.
1
17
.10.1002/aic.16983
15.
Berger
,
R.
,
1987
, “
Influences on the Behavior During the Phase Separation of Insoluble Organic-Aqueous Systems
,”
Process Engineering Colloquium
,
RWTH Aachen University
,
Aachen
.
16.
Nadiv
,
C.
, and
Semiat
,
R.
,
1995
, “
Batch Settling of Liquid-Liquid Dispersion
,”
Ind. Eng. Chem. Res.
, 34(7), pp.
2427
2435
.10.1021/ie00046a026
17.
May
,
K.
,
Jeelani
,
S. A. K.
, and
Hartland
,
S.
,
1998
, “
Influence of Ionic Surfactants on Separation of Liquid-Liquid Dispersions
,”
Colloids Surf., A
, 139(1), pp.
41
47
.10.1016/S0927-7757(98)00251-9
18.
Hartland
,
S.
, and
Jeelani
,
S. A. K.
,
1988
, “
Prediction of Sedimentation and Coalescence Profiles in A Decaying Batch Dispersion
,”
Chem. Eng. Sci.
, 43(9), pp.
2421
2429
.10.1016/0009-2509(88)85176-5
19.
Kochick
,
J. P.
,
2019
, “
Characterization of Dilute Oil-Water Emulsions Through Droplets Size Analysis Using the Dispersion Characterization Rig (DCR)
,” The University of Tulsa, Tulsa, OK.
20.
Chen
,
G.
, and
Tao
,
D.
,
2005
, “
An Experimental Study of Stability of Oil–Water Emulsion
,”
Fuel Process. Technol.
,
86
(
5
), pp.
499
508
.10.1016/j.fuproc.2004.03.010
21.
Mainzer
,
T.
, and
Woermann
,
D.
,
1996
, “
Temperature Dependence of Liquid-Liquid Interfacial Tension and Universal Critical Amplitude Ratio: An Experimental Study
,”
Phys. A
,
225
(
3–4
), pp.
312
322
.10.1016/0378-4371(95)00432-7
22.
Jennings
,
H. Y.
,
1967
, “
The Effect of Temperature and Pressure on the Interfacial Tension of Benzene-Water and Normal Decane-Water
,”
J. Colloid Interface Sci.
,
24
(
3
), pp.
323
329
.10.1016/0021-9797(67)90257-3
23.
Gaonkar
,
A. G.
,
1992
, “
Effects of Salt, Temperature, and Surfactants on the Interfacial Tension Behavior of a Vegetable Oil/Water System
,”
J. Colloid Interface Sci.
,
149
(
1
), pp.
256
260
.10.1016/0021-9797(92)90412-F
24.
Lutton
,
E. S.
,
Stauffer
,
C. E.
,
Martin
,
J. B.
, and
Fehl
,
A. J.
,
1969
, “
Solid and Liquid Monomolecular Film at Oil H2O Interfaces
,”
J. Colloid Interface Sci.
,
30
(
3
), pp.
283
290
.10.1016/0021-9797(69)90395-6
25.
Cabrerizo-Vílchez
,
M. A.
,
Policova
,
Z.
,
Kwok
,
D. Y.
,
Chen
,
P.
, and
Neumann
,
A. W.
,
1995
, “
The Temperature Dependence of the Interfacial Tension of Aqueous Human Albumin Solution/Decane
,”
Colloids Surf., B
,
5
(
1–2
), pp.
1
9
.10.1016/0927-7765(95)01203-U
26.
Kamp
,
J.
,
Villwock
,
J.
, and
Kraume
,
M.
,
2017
, “
Drop Coalescence in Technical Liquid/Liquid Applications: A Review on Experimental Techniques and Modeling Approaches
,”
Rev. Chem. Eng.
,
33
(
1
), pp.
1
47
.10.1515/revce-2015-0071
27.
Jeffreys
,
G. V.
, and
Davies
,
G. A.
,
1971
, “
Coalescence of Liquid Droplets and Liquid Dispersion
,”
Recent Advances in Liquid-Liquid Extraction
,
C.
Hanson
, ed., Pergamon Press, Oxford, pp.
495
584
.
28.
ExxonMobil, 2020, Product Safety Summary EXXSOL™ D110 Fluid, Spring, TX.
29.
Gavrielatos
,
I.
,
Mohan
,
R.
, and
Shoham
,
O.
,
2017
, “
Effect of Intermediate Wettability Nanoparticles on Oil-Water Emulsion Stability
,”
J. Pet. Sci. Eng.
,
152
, pp.
664
674
.10.1016/j.petrol.2016.12.040
30.
Gavrielatos
,
I.
,
2016
,
Effect of Nanoparticles on Oil-Water Emulsion Stability
,
The University of Tulsa
, Tulsa, OK.
31.
Angardi
,
V.
,
2016
,
Effect of Aqueous Phase Composition and Surfactant on Oil-Water Dispersion Stability
,
The University of Tulsa
, Tulsa, OK.
32.
Basheva
,
E. S.
,
Gurkov
,
T. D.
,
Ivanov
,
I. B.
,
Bantchev
,
G. B.
,
Campbell
,
B.
, and
Borwankar
,
R. P.
,
1999
, “
Size Dependence of the Stability of Emulsion Drops Pressed Against a Large Interface
,”
Langmuir
,
15
(
20
), pp.
6764
6769
.10.1021/la990186j
33.
Ivanov
,
I. B.
,
Danov
,
K. D.
, and
Kralchevsky
,
P. A.
,
1999
, “
Flocculation and Coalescence of Micron-Size Emulsion Droplets
,”
Colloids Surf., A
, 152(1–2), pp.161–182.10.1016/S0927-7757(98)00620-7
You do not currently have access to this content.