Abstract

Marine biofouling threatens ship safety by causing unexpected control surface performance. To explore these adverse biofouling effects, this paper presents the results of wind tunnel testing using a model-scale, low aspect ratio NACA 0018 control surface. Simulated calcareous biofouling was introduced as coarse-grit sandpaper, and, uniquely, roughness locations and sandpaper grits were varied to better understand any resulting degradation in hydrodynamic performance. Direct experimentation at high (turbulent) chord Reynolds number values suggests that leading-edge (LE) roughness with 36-grit sandpaper results in worst-case performance, with the control surface's average lift-to-drag ratio reduced by 63%. Additional findings are presented, and recommendations for future experimental work are also provided.

References

1.
Carchen
,
A.
, and
Atlar
,
M.
,
2020
, “
Four KPIs for the Assessment of Biofouling Effect on Ship Performance
,”
Ocean Eng.
,
217
, p.
107971
.10.1016/j.oceaneng.2020.107971
2.
Demirel
,
Y. K.
,
Uzun
,
D.
,
Zhang
,
Y.
,
Fang
,
H. C.
,
Day
,
A. H.
, and
Turan
,
O.
,
2017
, “
Effect of Barnacle Fouling on Ship Resistance and Powering
,”
Biofouling
,
33
(
10
), pp.
819
834
.10.1080/08927014.2017.1373279
3.
Lindholdt
,
A.
,
Dam-Johansen
,
K.
,
Olsen
,
S. M.
,
Yebra
,
D. M.
, and
Kiil
,
S.
,
2015
, “
Effects of Biofouling Development on Drag Forces of Hull Coatings for Ocean-Going Ships: A Review
,”
J. Coat. Technol. Res.
,
12
(
3
), pp.
415
444
.10.1007/s11998-014-9651-2
4.
Liu
,
S.
,
Papanikolaou
,
A.
,
Bezunartea-Barrio
,
A.
,
Shang
,
B.
, and
Sreedharan
,
M.
,
2021
, “
On the Effect of Biofouling on the Minimum Propulsion Power of Ships for Safe Navigation in Realistic Conditions
,”
Biofouling
,
37
(
2
), pp.
194
205
.10.1080/08927014.2021.1890044
5.
Schultz
,
M. P.
,
2007
, “
Effects of Coating Roughness and Biofouling on Ship Resistance and Powering
,”
Biofouling
,
23
(
5
), pp.
331
341
.10.1080/08927010701461974
6.
Schultz
,
M. P.
,
Bendick
,
J. A.
,
Holm
,
E. R.
, and
Hertel
,
W. M.
,
2011
, “
Economic Impact of Biofouling on a Naval Surface Ship
,”
Biofouling
,
27
(
1
), pp.
87
98
.10.1080/08927014.2010.542809
7.
Schultz
,
M. P.
,
Walker
,
J. M.
,
Steppe
,
C. N.
, and
Flack
,
K. A.
,
2015
, “
Impact of Diatomaceous Biofilms on the Frictional Drag of Fouling-Release Coatings
,”
Biofouling
,
31
(
9–10
), pp.
759
773
.10.1080/08927014.2015.1108407
8.
Song
,
S.
,
Demirel
,
Y. K.
, and
Atlar
,
M.
,
2019
, “
An Investigation Into the Effect of Biofouling on the Ship Hydrodynamic Characteristics Using CFD
,”
Ocean Eng.
,
175
, pp.
122
137
.10.1016/j.oceaneng.2019.01.056
9.
Song
,
S.
,
Demirel
,
Y. K.
, and
Atlar
,
M.
,
2020
, “
Propeller Performance Penalty of Biofouling: Computational Fluid Dynamics Prediction
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
6
), p.
061901
.10.1115/1.4047201
10.
Townsin
,
R. L.
,
2003
, “
The Ship Hull Fouling Penalty
,”
Biofouling
,
19
(
Suppl. 1
), pp.
9
15
.10.1080/0892701031000088535
11.
Uzun
,
D.
,
Sezen
,
S.
,
Atlar
,
M.
, and
Turan
,
O.
,
2021
, “
Effect of Biofouling Roughness on the Full-Scale Powering Performance of a Submarine
,”
Ocean Eng.
,
238
, p.
109773
.10.1016/j.oceaneng.2021.109773
12.
Carchen
,
A.
,
Atlar
,
M.
,
Turkmen
,
S.
,
Pazouki
,
K.
, and
Murphy
,
A. J.
,
2019
, “
Ship Performance Monitoring Dedicated to Biofouling Analysis: Development on a Small Size Research Catamaran
,”
Appl. Ocean Res.
,
89
, pp.
224
236
.10.1016/j.apor.2019.05.005
13.
Collino
,
B. J.
,
1997
, “
An Investigation of the Hydrodynamic Effects of Enteromorpha Clathrata Fouling on Hydrofoils
,” MS thesis,
Embry-Riddle Aeronautical University
,
Daytona Beach, FL
.
14.
Daidola
,
J. C.
,
2021
, “
Effects of Hull and Control Surface Roughness on Naval Ship Maneuvering
,”
Nav. Eng. J.
,
133
(
2
), pp.
67
76
.https://www.ingentaconnect.com/contentone/asne/nej/2021/00000133/00000002/art00021?crawler=true&mimetype=application/pdf
15.
Daidola
,
J. C.
,
2022
, “
Effects of Hull and Control Surface Roughness on Ship Maneuvering
,”
J. Ship Res.
,
66
(
1
), pp.
15
24
.10.5957/JOSR.11190066
16.
Gangadharan
,
S. N.
,
Schultz
,
M.
,
Collino
,
B.
,
Clark
,
A.
, and
Wimberly
,
C. R.
,
2001
, “
Experimental Investigation of Enteromorpha Clathrata Biofouling on Lifting Surfaces of Marine Vehicles
,”
Mar. Technol.
,
38
(
1
), pp.
31
50
.10.5957/mt1.2001.38.1.31
17.
Miklosovic
,
D. S.
,
Schultz
,
M. P.
, and
Esquivel
,
C.
,
2004
, “
Effects of Surface Finish on Aerodynamic Performance of a Sailboat Centerboard
,”
J. Aircr.
,
41
(
5
), pp.
1073
1081
.10.2514/1.777
18.
Lewis
,
E. V.
, ed.,
1989
,
Principles of Naval Architecture, Second Revision, Volume III: Motions in Wave and Controllability
,
SNAME
,
Jersey City, NJ
.
19.
Molland
,
A. F.
, and
Turnock
,
S. R.
,
2007
,
Marine Rudders and Control Surfaces: Principles, Data, Design and Applications
, 1st ed.,
Butterworth-Heinemann
,
Oxford, UK
.
20.
Molland
,
A. F.
, and
Turnock
,
S. R.
,
2022
,
Marine Rudders and Control Surfaces: Principles, Data, Design and Applications
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
21.
Lunn
,
I.
,
1974
,
Antifouling: A Brief Introduction to the Origins and Development of the Marine Antifouling Industry
,
BCA Publications
,
Thame, UK
.
22.
Callow
,
M. E.
, and
Callow
,
J. A.
,
2002
, “
Marine Biofouling: A Sticky Problem
,”
Biologist
,
49
(
1
), pp.
1
5
.http://www.biosciences-labs.bham.ac.uk/callowj/PDF%20files/iob.pdf
23.
Gowing
,
S.
, and
Holm
,
E.
,
2012
, “
Flow-Generated Forces on Hull Fouling Organisms and Hydrodynamic Self-Cleaning of Fouling-Release Coatings
,”
16th International Congress on Marine Corrosion and Fouling
, Seattle, WA, June 24–28.
24.
Schultz
,
M. P.
,
Kavanagh
,
C. J.
, and
Swain
,
G. W.
,
1999
, “
Hydrodynamic Forces on Barnacles: Implications on Detachment From Fouling-Release Surfaces
,”
Biofouling
,
13
(
4
), pp.
323
335
.10.1080/08927019909378388
25.
Vellwock
,
A. E.
,
Fu
,
J.
,
Meng
,
Y.
,
Thiyagarajan
,
V.
, and
Yao
,
H.
,
2019
, “
A Data-Driven Approach to Predicting the Attachment Density of Biofouling Organisms
,”
Biofouling
,
35
(
8
), pp.
832
839
.10.1080/08927014.2019.1667982
26.
Holm
,
E. R.
,
2012
, “
Barnacles and Biofouling
,”
Integr. Comp. Biol.
,
52
(
3
), pp.
348
355
.10.1093/icb/ics042
27.
Woods Hole Oceanographic Institution (WHOI)
,
1952
,
Marine Fouling and Its Prevention
,
Naval Institute Press
,
Annapolis, MD
.
28.
Newman
,
W. A.
, and
Abbott
,
D. P.
,
1980
, “
Cirripedia: The Barnacles
,”
Intertidal Invertebrates of California
,
R. H.
Morris
,
D. P.
Abbott
, and
E. C.
Haderlie
, eds.,
Stanford University Press
,
Stanford, CA
, pp.
504
535
.
29.
Clare
,
A. S.
, and
Høeg
,
J. T.
,
2008
, “
Balanus Amphitrite or Amphibalanus Amphitrite? A Note on Barnacle Nomenclature
,”
Biofouling
,
24
(
1
), pp.
55
57
.10.1080/08927010701830194
30.
Henry
,
D. P.
, and
McLaughlin
,
P. A.
,
1975
, “
The Barnacles of the Balanus Amphitrite Complex (Cirripedia, Thoracica)
,”
Zool. Verh.
,
141
(
1
), pp.
1
254
.https://archive.org/details/zoologische-verhandelingen-141-001-254/page/n9/mode/2up
31.
Spivey
,
H. R.
,
1988
, “
Shell Morphometry in Barnacles: Quantification of Shape and Shape Change in Balanus
,”
J. Zool.
,
216
, pp.
265
294
.10.1111/j.1469-7998.1988.tb02430.x
32.
Genc
,
M. S.
,
Koca
,
K.
, and
Acikel
,
H. H.
,
2019
, “
Investigation of Pre-Stall Flow Control on Wind Turbine Blade Airfoil Using Roughness Element
,”
Energy
,
176
, pp.
320
334
.10.1016/j.energy.2019.03.179
33.
von Doenhoff
,
A. E.
, and
Horton
,
E. A.
,
1956
, “
A Low-Speed Experimental Investigation of the Effect of a Sandpaper Type Roughness on Boundary-Layer Transition
,” Langley Aeronautical Laboratory, Langley Field, VA, NACA Technical Note 3858.
34.
Walker
,
J. M.
,
Flack
,
K. A.
,
Lust
,
E. E.
,
Schultz
,
M. P.
, and
Luznik
,
L.
,
2014
, “
Experimental and Numerical Studies of Blade Roughness and Fouling on Marine Current Turbine Performance
,”
Renewable Energy
,
66
, pp.
257
267
.10.1016/j.renene.2013.12.012
35.
Merriam-Webster, n.d., “
Control Surface
,” Merriam-Webster Inc., Springfield, MA, accessed Sept. 26, 2023, https://www.merriam-webster.com/dictionary/control%20surface
36.
Mott
,
L. V.
,
1997
,
The Development of the Rudder: A Technological Tale
,
Chatham
,
London
.
37.
Liu
,
J.
, and
Hekkenberg
,
R.
,
2017
, “
Sixty Years of Research on Ship Rudders: Effects of Design Choices on Rudder Performance
,”
Ships Offshore Struct.
,
12
(
4
), pp.
495
512
.10.1080/17445302.2016.1178205
38.
Abbott
,
I. H.
, and
von Doenhoff
,
A. E.
,
1959
,
Theory of Wing Sections, Including a Summary of Airfoil Data
,
Dover
,
New York
.
39.
Larsson
,
L.
,
Eliasson
,
R. E.
, and
Orych
,
M.
,
2014
,
Principles of Yacht Design
, 4th ed.,
International Marine
,
Camden, ME
.
40.
Eggert
,
E. F.
,
1930
, “
Resistance of Various Rudders on a Model of the U.S.S. Patoka
,”
United States Experimental Model Basin
,
Washington, DC
, Report No. 268.
41.
National Aeronautics and Space Administration (NASA)
, n.d., “
Aerodynamic Center
,” NASA, Washington, DC, accessed Sept. 26, 2023, https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/ac.html
42.
Barlow
,
J. B.
,
Rae
,
W. H.
, and
Pope
,
A.
,
1999
,
Low-Speed Wind Tunnel Testing
, 3rd ed.,
Wiley
,
New York
.
43.
Park
,
J. T.
,
Cutbirth
,
J. M.
, and
Brewer
,
W. H.
,
2002
, “
Hydrodynamic Performance of the Large Cavitation Channel (LCC)
,” NSWCCD,
West Bethesda, MD
, Report No. NSWCCD-50-TR-2002/068.
44.
Laun
,
A.
,
2017
, “
Improving the Conceptual Design Process for Unmanned Underwater Vehicles (UUVs)
,”
The 30th American Towing Tank Conference
,
West Bethesda, MD
, Oct. 3–5, pp.
1
6
.10.5957/ATTC-2017-0014
45.
van Lammeren
,
W. P. A.
,
Troost
,
L.
, and
Koning
,
J. G.
,
1948
, “
Steering
,”
Resistance, Propulsion, and Steering of Ships: A Manual for Designing Hull Forms, Propellers, and Rudders
,
W. P. A.
Van Lammeren
, ed.,
H. Stam
,
Haarlem, The Netherlands
, pp.
310
349
.
46.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
,
Cambridge, UK
.
47.
Raffel
,
M.
,
Willert
,
C.
,
Wereley
,
S.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry: A Practical Guide
, 2nd ed.,
Springer
,
Berlin, Germany
.
48.
Fehlner
,
L. F.
,
1951
, “
The Design of Control Surfaces for Hydrodynamic Applications
,”
David W. Taylor Model Basin
,
Washington, DC
, Report No. C-358.
49.
Brennen
,
C. E.
,
2016
,
Internet Book on Fluid Mechanics
,
Dankat Publishing
,
Pasadena, CA
.
50.
Whicker
,
L. F.
, and
Fehlner
,
L. F.
,
1958
, “
Free-Stream Characteristics of a Family of Low-Aspect-Ratio, All-Movable Control Surfaces for Application to Ship Design
,”
David Taylor Model Basin
,
Washington, DC
, Report No. 933.
51.
Brunner
,
C. E.
,
Kiefer
,
J.
,
Hansen
,
M. O. L.
, and
Hultmark
,
M.
,
2021
, “
Study of Reynolds Number Effects on the Aerodynamics of a Moderately Thick Airfoil Using a High-Pressure Wind Tunnel
,”
Exp. Fluids
,
62
(17
8
), pp.
1
17
.10.1007/s00348-021-03267-8
52.
Hoerner
,
S. F.
,
1965
,
Fluid-Dynamic Drag: Theoretical, Experimental, and Statistical Information
,
Hoerner Fluid Dynamics
,
Bakersfield, CA
.
53.
Hoerner
,
S. F.
,
1985
,
Fluid-Dynamic Lift: Practical Information on Aerodynamic and Hydrodynamic Lift
, 2nd ed.,
Hoerner
,
New York
.
54.
Winslow
,
J.
,
Otsuka
,
H.
,
Govindarajan
,
B.
, and
Chopra
,
I.
,
2018
, “
Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers (104-105)
,”
J. Aircr.
,
55
(
3
), pp.
905
1316
.10.2514/1.C034415
55.
Miley
,
S. J.
,
1982
, “
A Catalog of Low Reynolds Number Airfoil Data for Wind Turbine Applications
,”
Texas A&M University
,
College Station, TX
, Report No. RFP-3387.
56.
Bourgoyne
,
D. A.
,
Judge
,
C. Q.
,
Hamel
,
J. M.
,
Ceccio
,
S. L.
, and
Dowling
,
D. R.
,
2001
, “
Hydrofoil Testing at High Reynolds Number
,”
The 26th American Towing Tank Conference
,
Glen Cove, NY
, July 23–24, pp.
1
9
.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4e004ab50d75ae9ed0f6fe8b79c2ecc1092bdb68
57.
Bragg
,
M. B.
,
Gregorek
,
G. M.
, and
Lee
,
J. D.
,
1986
, “
Airfoil Aerodynamics in Icing Conditions
,”
J. Aircr.
,
23
(
1
), pp.
76
81
.10.2514/3.45269
58.
Broeren
,
A. P.
,
Bragg
,
M. B.
, and
Addy
,
H. E.
,
2004
, “
Effect of Intercycle Ice Accretions on Airfoil Performance
,”
J. Aircr.
,
41
(
1
), pp.
165
174
.10.2514/1.1683
59.
Orme
,
J. A. C.
,
Masters
,
I.
, and
Griffiths
,
R. T.
,
2001
, “
Investigation of the Effect of Biofouling on the Efficiency of Marine Current Turbines
,”
Marine Renewable Energy Conference
,
Newcastle Upon Tyne, UK
.
60.
Walker
,
J. S.
,
Green
,
R. B.
,
Gillies
,
E. A.
, and
Phillips
,
C.
,
2020
, “
The Effect of a Barnacle-Shaped Excrescence on the Hydrodynamic Performance of a Tidal Turbine Blade Section
,”
Ocean Eng.
,
217
, p.
107849
.10.1016/j.oceaneng.2020.107849
61.
Kruse
,
E. K.
,
Bak
,
C.
, and
Olsen
,
A. S.
,
2021
, “
Wind Tunnel Experiments on a NACA 633-418 Airfoil With Different Types of Leading Edge Roughness
,”
Wind Energy
,
24
(
11
), pp.
1263
1274
.10.1002/we.2630
62.
Song
,
S.
,
Dai
,
S.
,
Demirel
,
Y. K.
,
Atlar
,
M.
,
Day
,
S.
, and
Turan
,
O.
,
2021
, “
Experimental and Theoretical Study of the Effect of Hull Roughness on Ship Resistance
,”
J. Ship Res.
,
65
(
1
), pp.
62
71
.10.5957/JOSR.07190040
63.
Song
,
S.
,
Ravenna
,
R.
,
Dai
,
S.
,
Muscat-Fenech
,
C. D.
,
Tani
,
G.
,
Demirel
,
Y. K.
,
Atlar
,
M.
,
Day
,
S.
, and
Incecik
,
A.
,
2021
, “
Experimental Investigation on the Effect of Heterogeneous Hull Roughness on Ship Resistance
,”
Ocean Eng.
,
223
, p.
108590
.10.1016/j.oceaneng.2021.108590
64.
Ravenna
,
R.
,
Marino
,
A.
,
Song
,
S.
,
Atlar
,
M.
,
Turan
,
O.
,
Day
,
S.
, and
Demirel
,
Y. K.
,
2022
, “
Experimental Study on the Effect of Biomimetic Tubercles on the Drag of a Flat Plate
,”
Ocean Eng.
,
255
, p.
111445
.10.1016/j.oceaneng.2022.111445
65.
Miklosovic
,
D. S.
,
2021
, “
Experiment 2: Aerodynamic Characteristics of Airfoils
,”
EA303 Wind Tunnel Laboratory Course Notes
,
USNA
,
Annapolis, MD
.
66.
Ramsay
,
D. B.
,
Dickinson
,
G. H.
,
Orihuela
,
B.
,
Rittschof
,
D.
, and
Wahl
,
K. J.
,
2008
, “
Base Plate Mechanics of the Barnacle Balanus Amphitrite (= Amphibalanus Amphitrite
),”
Biofouling
,
24
(
2
), pp.
109
118
.10.1080/08927010701882112
67.
Rittschof
,
D.
,
Orihuela
,
B.
,
Stafslien
,
S.
,
Daniels
,
J.
,
Christianson
,
D.
,
Chisholm
,
B.
, and
Holm
,
E.
,
2008
, “
Barnacle Reattachment: A Tool for Studying Barnacle Adhesion
,”
Biofouling
,
24
(
1
), pp.
1
9
.10.1080/08927010701784920
68.
Smithsonian Environmental Research Center (SERC)
,
2022
, “
Amphibalanus Amphitrite
,” SERC, Edgewater, MD, accessed Apr. 7, 2022, https://invasions.si.edu/nemesis/species_summary/89616
69.
Wang
,
C.
,
Schultzhaus
,
J. N.
,
Taitt
,
C. R.
,
Leary
,
D. H.
,
Shriver-Lake
,
L. C.
,
Snellings
,
D.
, and
Sturiale
,
S.
, et al.,
2018
, “
Characterization of Longitudinal Canal Tissue in the Acorn Barnacle Amphibalanus Amphitrite
,”
PLoS ONE
,
13
(
12
), p.
e0208352
.10.1371/journal.pone.0208352
70.
Womack
,
K. M.
,
Volino
,
R. J.
,
Meneveau
,
C.
, and
Schultz
,
M. P.
,
2022
, “
Turbulent Boundary Layer Flow Over Regularly and Irregularly Arranged Truncated Cone Surfaces
,”
J. Fluid Mech.
,
933
, p.
A38
.10.1017/jfm.2021.946
71.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2023
, “
Hydraulic Characterization of Sandpaper Roughness
,”
Exp. Fluids
,
64
(
3
), pp.
1
11
.10.1007/s00348-022-03544-0
72.
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2022
, “
Commercial Sandpaper and Nikuradse Sandgrain Roughness: Similarities and Differences
,”
APS-DFD 75th Annual Meeting
,
Indianapolis, IN
, Nov.
20
22
.
73.
Abrasives South
,
2023
, “
Abrasives Grit Sizes: CAMI vs. FEPA
,” Abrasives South Inc., Charleston, SC, accessed Sept. 29, 2023, https://abrasives-south.com/resources/abrasives-grading-system/
74.
Grainger
,
2017
, “
Sandpaper Grit Charts and Grades
,” Grainger, Lake Forest, IL, accessed Sept. 29, 2023, https://www.grainger.com/know-how/equipment/kh-video-sandpaper-grit-chart
75.
Klingspor, n.d., “
Coated Abrasives: Grit Grading Systems
,” Klingspor, Hickory, NC, accessed Sept. 29, 2023, https://www.klingspor.com/coated-abrasives-grid
76.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamics
,
MIT Press
,
Cambridge, MA
.
77.
Timmer
,
W. A.
,
2008
, “
Two-Dimensional Low-Reynolds Number Wind Tunnel Results for Airfoil NACA 0018
,”
Wind Eng.
,
32
(
6
), pp.
525
537
.10.1260/030952408787548848
78.
Soltani
,
M. R.
,
Birjandi
,
A. H.
, and
Moorani
,
M. S.
,
2011
, “
Effect of Surface Contamination on the Performance of a Section of a Wind Turbine Blade
,”
Sci. Iran. B
,
18
(
3
), pp.
349
357
.10.1016/j.scient.2011.05.024
79.
Martinez-Aranda
,
S.
,
Garcia-Gonzalez
,
A. L.
,
Parras
,
L.
,
Velazquez-Navarro
,
J. F.
, and
del Pino
,
C.
,
2016
, “
Comparison of the Aerodynamic Characteristics of the NACA0012 Airfoil at Low-to-Moderate Reynolds Numbers for Any Aspect Ratio
,”
Int. J. Aerosp. Sci.
,
4
(
1
), pp.
1
8
.http://article.sapub.org/10.5923.j.aerospace.20160401.01.html
80.
Harvald
,
S. A.
,
1983
,
Resistance and Propulsion of Ships
,
Wiley
,
New York
.
81.
Naval Sea Systems Command (NAVSEA)
,
2006
, “
Naval Ships' Technical Manual, Chapter 081: Waterborne Underwater Hull Cleaning of Navy Ships
,”
NAVSEA
,
Washington, DC
, Report No. S9086-CQ-STM-010 (Rev. 5).
You do not currently have access to this content.