Abstract

Cavitation erosion in hydraulic machinery constitutes a multifaceted, instantaneous physicochemical process resulting in material wear and decreased efficiency. This paper employs an enhanced Eulerian–Lagrangian method to evaluate cavitation erosion. The method captures erosive impact loads released by the nonspherical collapse of near-wall bubbles and integrates them with a one-dimensional ductile material mode, a capability lacking in traditional homogeneous mixture methods. A classic axisymmetric nozzle test case is conducted under four different cavitation numbers (σ = 0.8, 0.9, 1.09, and 1.6) to validate the reliability of the new approach. Qualitative and quantitative analysis demonstrates that the impact load distribution on the lower and upper walls aligns with experimental measurements. Compared with reference works, the new method accurately predicts the maximum wear position and yields a narrower erosion area closer to the experimental data. Moreover, the relative error of the minimum incubation time at σ = 0.9 on the lower wall calculated by the new method is 4.67%, and the relative error of the maximum wear rate is 36.6%. This method is pivotal for further studying how various materials respond to cavitation wear. Further analysis reveals that material response patterns are similar under cavitation erosion conditions at σ = 0.8, 0.9, and 1.09. In contrast, the material surface wear rate is reduced by 46.7%, and the incubation time nearly triples at σ = 1.6.

References

1.
Bensow
,
R. E.
, and
Bark
,
G.
,
2010
, “
Implicit LES Predictions of the Cavitating Flow on a Propeller
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041302
.10.1115/1.4001342
2.
Feng
,
X. R.
,
Liu
,
Y. Q.
, and
Wang
,
B. L.
,
2023
, “
Tip Leakage Flow Structures and Its Influence on Cavitation Inception for a NACA0009 Hydrofoil
,”
ASME J. Fluids Eng.
,
145
(5), p.
051203
.10.1115/1.4056941
3.
Ji
,
B.
,
Wang
,
Z. Y.
,
Cheng
,
H. Y.
, and
Bensow
,
R. E.
,
2024
, “
Cavitation Research With Computational Fluid Dynamics: From Euler-Euler to Euler-Lagrange Approach
,”
J. Hydrodyn.
,
36
(
1
), pp.
1
23
.10.1007/s42241-024-0001-2
4.
Hsiao
,
C. T.
,
Ma
,
J. S.
, and
Chahine
,
G. L.
,
2017
, “
Multiscale Tow-Phase Flow Modeling of Sheet and Cloud Cavitation
,”
Int. J. Multiphase Flow
,
90
, pp.
102
117
.10.1016/j.ijmultiphaseflow.2016.12.007
5.
Alavi
,
A.
, and
Roohi
,
E.
,
2023
, “
Large Eddy Simulations of Cavitation Around a Pitching–Plunging Hydrofoil
,”
Phys. Fluids
,
35
(
12
), p.
125102
.10.1063/5.0177678
6.
Abbasi
,
A.
,
Franzosi
,
G.
,
Viviani
,
M.
,
Bertetta
,
D.
, and
Tani
,
G.
,
2024
, “
Experimental Analysis of Blade Root Cavitation Erosion on Set of Model Propellers
,”
Ocean Eng.
,
311
, p.
118766
.10.1016/j.oceaneng.2024.118766
7.
Zhao
,
G. S.
,
Liang
,
N.
,
Li
,
Q. Q.
,
Dong
,
W.
,
Cao
,
L. L.
, and
Wu
,
D. Z.
,
2024
, “
Energy Contribution Study of Blade Cavitation Control by Obstacles in a Waterjet Pump Based on mPOD and EEMD
,”
ASME J. Fluids Eng.
,
146
(
5
), p.
051201
.10.1115/1.4064006
8.
Arabnejad
,
M. H.
,
Svennberg
,
U.
, and
Bensow
,
R. E.
,
2021
, “
Numerical Assessment of Cavitation Erosion Risk Using Incompressible Simulation of Cavitating Flows
,”
Wear
,
464–465
, p.
203529
.10.1016/j.wear.2020.203529
9.
Melissaris
,
T.
,
Schenke
,
S.
,
Bulten
,
N.
, and
van Terwisga
,
T. J. C.
,
2022
, “
Cavitation Erosion Risk Assessment on a Full-Scale Steerable Thruster
,”
Ocean Eng.
,
251
, p.
111019
.10.1016/j.oceaneng.2022.111019
10.
Arabnejad
,
M. H.
,
Amini
,
A.
,
Farhat
,
M.
, and
Bensow
,
R. E.
,
2020
, “
Hydrodynamic Mechanisms of Aggressive Collapse Events in Leading Edge Cavitation
,”
J. Hydrodyn.
,
32
(
1
), pp.
6
19
.10.1007/s42241-020-0002-8
11.
Qiu
,
N.
,
Xu
,
P.
,
Zhu
,
H.
,
Zhou
,
W. J.
,
Xun
,
D. B.
,
Li
,
M. W.
, and
Che
,
B. X.
,
2024
, “
Cavitation Morphology and Erosion on Hydrofoil With Slits
,”
Int. J. Mech. Sci.
,
275
, p.
109345
.10.1016/j.ijmecsci.2024.109345
12.
Plesset
,
M. S.
, and
Chapman
,
R. B.
,
1971
, “
Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary
,”
J. Fluid Mech.
,
47
(
2
), pp.
283
290
.10.1017/S0022112071001058
13.
Li
,
S.
,
Li
,
Y. B.
, and
Zhang
,
A. M.
,
2015
, “
Numerical Analysis of the Bubble Jet Impact on a Rigid Wall
,”
Appl. Ocean Res.
,
50
, pp.
227
236
.10.1016/j.apor.2015.02.003
14.
Kim
,
K. H.
,
Chahine
,
G. L.
,
Franc
,
J. P.
, and
Karimi
,
A.
,
2014
,
In Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction
,
Springer
,
New York, America
.
15.
Zhao
,
D.
,
Deng
,
F. Q.
, and
Zhang
,
L. X.
,
2023
, “
Numerical Investigation on the Impact Pressure Induced by a Cavitation Bubble Collapsing Near a Solid Wall
,”
Phys. Fluids
,
35
(
4
), p.
043315
.10.1063/5.0145499
16.
Sarkar
,
P.
,
Ghigliotti
,
G.
,
Franc
,
J. P.
, and
Fivel
,
M.
,
2021
, “
Mechanism of Material Deformation During Cavitation Bubble Collapse
,”
J. Fluid Struct.
,
105
, p.
103327
.10.1016/j.jfluidstructs.2021.103327
17.
Hsiao
,
C. T.
,
Jayaprakash
,
A.
,
Kapahi
,
A.
,
Choi
,
J. K.
, and
Chahine
,
G. L.
,
2014
, “
Modelling of Material Pitting From Cavitation Bubble Collapse
,”
J. Fluid Mech.
,
755
, pp.
142
175
.10.1017/jfm.2014.394
18.
Dular
,
M.
, and
Coutier-Delgosha
,
O.
,
2009
, “
Numerical Modelling of Cavitation Erosion
,”
Int. J. Numer. Method Fluids
,
61
(
12
), pp.
1388
1410
.10.1002/fld.2003
19.
Peters
,
A.
,
Sagar
,
H.
,
Lantermann
,
U.
, and
el Moctar
,
O.
,
2015
, “
Numerical Modelling and Prediction of Cavitation Erosion
,”
Wear
,
338–339
, pp.
189
201
.10.1016/j.wear.2015.06.009
20.
Peters
,
A.
,
Lantermann
,
U.
, and
el Moctar
,
O.
,
2018
, “
Numerical Prediction of Cavitation Erosion on a Ship Propeller in Model- and Full-Scale
,”
Wear
,
408–409
, pp.
1
12
.10.1016/j.wear.2018.04.012
21.
Li
,
Z. R.
,
Pourquie
,
M.
, and
van Terwisga
,
T.
,
2014
, “
Assessment of Cavitation Erosion With a URANS Method
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
041101
.10.1115/1.4026195
22.
Fortes-Patella
,
R.
,
Reboud
,
J. L.
, and
Briancon-Marjollet
,
L.
,
2004
, “
A Phenomenological and Numerical Model for Scaling the Flow Aggressiveness in Cavitation Erosion
,”
EROCAV Workshop Val de Reuil
,
France
, May, pp.
283
290
.http://resolver.tudelft.nl/uuid:cf841677-f923-4cef-9284-59b55bdf92d4
23.
Schenke
,
S.
, and
van Terwisga
,
T. J. C.
,
2019
, “
An Energy Conservative Method to Predict the Erosive Aggressiveness of Collapsing Cavitating Structures and Cavitating Flows From Numerical Simulations
,”
Int. J. Multiphase Flow
,
111
, pp.
200
218
.10.1016/j.ijmultiphaseflow.2018.11.016
24.
Melissaris
,
T.
,
Bulten
,
N.
, and
van Terwisga
,
T. J. C.
,
2019
, “
On the Applicability of Cavitation Erosion Risk Models With a URANS Solver
,”
ASME J. Fluids Eng.
,
141
(10), p.
101104
.10.1115/1.4043169
25.
Melissaris
,
T.
,
Schenke
,
S.
,
Bulten
,
N.
, and
van Terwisga
,
T. J. C.
,
2020
, “
On the Accuracy of Predicting Cavitation Impact Loads on Marine Propellers
,”
Wear
,
456–457
, p.
203393
.10.1016/j.wear.2020.203393
26.
Arabnejad
,
M. H.
,
Svennberg
,
U.
, and
Bensow
,
R. E.
,
2022
, “
Numerical Assessment of Cavitation Erosion Risk in a Commercial Water-Jet Pump
,”
ASME J. Fluids Eng.
,
144
, p.
051201
.10.1115/1.4052634
27.
Mihatsch
,
M. S.
,
Schmidt
,
S. J.
, and
Adams
,
N. A.
,
2015
, “
Cavitation Erosion Prediction Based on Analysis of Flow Dynamics and Impact Load Spectra
,”
Phys. Fluids
,
27
(
10
), p.
103302
.10.1063/1.4932175
28.
Schreiner
,
F.
,
Haese
,
M. G.
, and
Skoda
,
R.
,
2023
, “
Three-Dimensional Flow Simulation and Cavitation Erosion Modeling for the Assessment of Incubation Time and Erosion Rate
,”
Wear
,
524–525
, p.
204747
.10.1016/j.wear.2023.204747
29.
Trummler
,
T.
,
Schmidt
,
S. J.
, and
Adams
,
N. A.
,
2022
, “
Numerical Prediction of Erosion Due to a Cavitating Jet
,”
Wear
,
498–499
, p.
204304
.10.1016/j.wear.2022.204304
30.
Blume
,
M.
, and
Skoda
,
R.
,
2019
, “
3D Flow Simulation of a Circular Leading Edge Hydrofoil and Assessment of Cavitation Erosion by the Statistical Evaluation of Void Collapses and Cavitation Structures
,”
Wear
,
428–429
, pp.
457
469
.10.1016/j.wear.2019.04.011
31.
Mottyll
,
S.
, and
Skoda
,
R.
,
2016
, “
Numerical 3D Flow Simulation of Ultrasonic Horns With Attached Cavitation Structures and Assessment of Flow Aggressiveness and Cavitation Erosion Sensitive Wall Zones
,”
Ultrason. Sonochem.
,
31
, pp.
570
589
.10.1016/j.ultsonch.2016.01.025
32.
Schreiner
,
F.
,
Hanke
,
S.
, and
Skoda
,
R.
,
2021
, “
Assessment of Flow Aggressiveness and Erosion Damage Topography for Different Gap Widths in Ultrasonic Cavitation Testing
,”
Wear
,
484–485
, p.
203989
.10.1016/j.wear.2021.203989
33.
Abdel-Maksoud
,
M.
,
Hänel
,
D.
, and
Lantermann
,
U.
,
2010
, “
Modeling and Computation of Cavitation in Vortical Flow
,”
Int. J. Heat Fluid Flow
,
31
(
6
), pp.
1065
1074
.10.1016/j.ijheatfluidflow.2010.05.010
34.
Peters
,
A.
, and
Moctar
,
O.
,
2020
, “
Numerical Assessment of Cavitation-Induced Erosion Using a Multi-Scale Euler–Lagrange Method
,”
J. Fluid Mech.
,
894
, p.
A19
.10.1017/jfm.2020.273
35.
Ghahramani
,
E.
,
Ström
,
H.
, and
Bensow
,
R. E.
,
2021
, “
Numerical Simulation and Analysis of Multi-Scale Cavitating Flows
,”
J. Fluid Mech.
,
922
, p.
A22
.10.1017/jfm.2021.424
36.
Li
,
L. M.
,
Wang
,
Z. D.
,
Li
,
X. J.
, and
Zhu
,
J. C.
,
2021
, “
Multiscale Modeling of Tip-Leakage Cavitating Flows by a Combined Volume of Fluid and Discrete Bubble Model
,”
Phys. Fluids
,
33
, p.
062104
.10.1063/5.0054795
37.
Wang
,
X. C.
,
Bai
,
X. R.
,
Cheng
,
H. Y.
,
Ji
,
B.
, and
Peng
,
X. X.
,
2023
, “
Numerical Investigation of How Gap Size Influences Tip Leakage Vortex Cavitation Inception Using a Eulerian–Lagrangian Method
,”
Phys. Fluids
,
35
, p.
012113
.10.1063/5.0131813
38.
Madabhushi
,
A.
, and
Mahesh
,
K.
,
2023
, “
A Compressible Multi-Scale Model to Simulate Cavitating Flows
,”
J. Fluid Mech.
,
961
, p.
A6
.10.1017/jfm.2023.192
39.
Ochiai
,
N.
,
Iga
,
Y.
,
Nohmi
,
M.
, and
Ikohagi
,
T.
,
2010
, “
Numerical Prediction of Cavitation Erosion Intensity in Cavitating Flows Around a Clark Y 11.7% Hydrofoil
,”
J. Fluid Sci. Technol.
,
5
(
3
), pp.
416
431
.10.1299/jfst.5.416
40.
Ochiai
,
N.
,
Iga
,
Y.
,
Nohmi
,
M.
, and
Ikohagi
,
T.
,
2013
, “
Study of Quantitative Numerical Prediction of Cavitation Erosion in Cavitating Flow
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011302
.10.1115/1.4023072
41.
Khojasteh-Manesh
,
M.
, and
Mahdi
,
M.
,
2019
, “
Evaluation of Cavitation Erosion Intensity in a Microscale Nozzle Using Eulerian–Lagrangian Bubble Dynamic Simulation
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061303
.10.1115/1.4042960
42.
Wang
,
Z. Y.
,
Cheng
,
H. Y.
, and
Ji
,
B.
,
2022
, “
Numerical Prediction of Cavitation Erosion Risk in an Axisymmetric Nozzle Using a Multi-Scale Approach
,”
Phys. Fluids
,
34
(
6
), p.
062112
.10.1063/5.0095833
43.
Li
,
L. M.
,
Pei
,
C. Q.
,
Wang
,
Z. D.
,
Lin
,
Z.
,
Li
,
X. J.
, and
Zhu
,
Z. C.
,
2024
, “
Assessment of Cavitation Erosion Risk by Eulerian–Lagrangian Multiscale Modeling
,”
Int. J. Mech. Sci.
,
262
, p.
108735
.10.1016/j.ijmecsci.2023.108735
44.
Hattori
,
S.
,
Hirose
,
T.
, and
Sugiyama
,
K.
,
2010
, “
Prediction Method for Cavitation Erosion Based on Measurement of Bubble Collapse Impact Loads
,”
Wear
,
269
(
7–8
), pp.
507
514
.10.1016/j.wear.2010.05.015
45.
Berchiche
,
N.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
2002
, “
A Cavitation Erosion Model for Ductile Materials
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
601
606
.10.1115/1.1486474
46.
Franc
,
J. P.
,
2009
, “
Incubation Time and Cavitation Erosion Rate of Work-Hardening Materials
,”
ASME J. Fluids Eng.
,
131
(2), p.
021303
.10.1115/1.3063646
47.
Pendar
,
M. R.
,
Esmaeilifar
,
E.
, and
Roohi
,
E.
,
2020
, “
LES Study of Unsteady Cavitation Characteristics of a 3-D Hydrofoil With Wavy Leading Edge
,”
Int. J. Multiphase Flow
,
132
, p.
103415
.10.1016/j.ijmultiphaseflow.2020.103415
48.
Alavi
,
A.
,
Ghasemnezhad
,
M.
, and
Roohi
,
E.
,
2024
, “
Cavitation Analysis of Plunging Hydrofoils Using Large Eddy Simulations
,”
Ocean Eng.
,
311
, p.
118836
.10.1016/j.oceaneng.2024.118836
49.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
50.
Zhang
,
X. S.
,
Wang
,
J. H.
, and
Wan
,
D. C.
,
2020
, “
Euler-Lagrange Study of Bubble Drag Reduction in Turbulent Channel Flow and Boundary Layer Flow
,”
Phys. Fluids
,
32
(
2
), p.
027101
.10.1063/1.5141608
51.
Ghasemnezhad
,
M.
, and
Roohi
,
E.
,
2024
, “
Large Eddy Simulation of Cavitating Flow Around a Pitching Hydrofoil
,”
Ocean Eng.
,
292
, p.
116547
.10.1016/j.oceaneng.2023.116547
52.
Roohi
,
E.
,
Zahiri
,
A. P.
, and
Passandideh-Fard
,
M.
,
2013
, “
Numerical Simulation of Cavitation Around a Two-Dimensional Hydrofoil Using VOF Method and LES Turbulence Model
,”
Appl. Math. Model.
,
37
(
9
), pp.
6469
6488
.10.1016/j.apm.2012.09.002
53.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Fourth International Conference on Multiphase Flow New
,
Orleans
, LA, May 24–June 1, pp.
1
12
.https://www.researchgate.net/publication/296196752_Physical_and_Numerical_Modeling_of_Unsteady_Cavitation_Dynamics
54.
Wang
,
Z. Y.
,
Cheng
,
H. Y.
,
Ji
,
B.
, and
Peng
,
X. X.
,
2023
, “
Numerical Investigation of Inner Structure and Its Formation Mechanism of Cloud Cavitating Flow
,”
Int. J. Multiphase Flow
,
165
, p.
104484
.10.1016/j.ijmultiphaseflow.2023.104484
55.
Schiller
,
L.
, and
Nauman
,
A. Z.
,
1933
, “
A Drag Coefficient Correlation
,”
Zeit. Ver. Deutsch. Ing.
,
77
, pp.
318
320
.
56.
Mei
,
R.
,
1992
, “
An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number
,”
Int. J. Multiphase Flow
,
18
(
1
), pp.
145
147
.10.1016/0301-9322(92)90012-6
57.
Vallier
,
A.
,
2013
, “
Simulations of cavitation - From the large vapour structures to the small bubble dynamics
,”
Ph.D. thesis
,
Lund University
,
Lund, Sweden
.https://www.energy.lth.se/fileadmin/energivetenskaper/Avhandlingar/Vallier_PhD.pdf
58.
Lidtke
,
A. K.
,
2017
, “
Predicting Radiated Noise of Marine Propellers Using Acoustic Analogies and Hybrid Eulerian-Lagrangian Cavitation Models
,”
Ph.D. thesis
,
University of Southampton
,
Southampton, Britain
.https://eprints.soton.ac.uk/413579/1/FINAL_e_thesis_for_e_prints_LIDTKE_23636238.pdf
59.
Tomita
,
Y.
, and
Shima
,
A.
,
1977
, “
On the Behavior of a Sphere Bubble and the Impulse Pressure in a Viscous Compressible Liquid
,”
Bull. JSME
,
20
(
149
), pp.
1453
1460
.10.1299/jsme1958.20.1453
60.
Mathew
,
S.
,
Theo
,
G.
, and
Nikolaidis
,
E.
,
2006
, “
Numerical Simulation of Traveling Bubble Cavitation
,”
Int. J. Numer. Method Heat Fluid Flow
,
16
(
4
), pp.
393
416
.10.1108/09615530610653055
61.
Kellison
,
S. G.
,
1975
,
Fundamentals of Numerical Analysis
,
Richard D Irwin Inc
,
Homewood, Illinois
.
62.
Heinrich
,
M.
, and
Schwarze
,
R.
,
2020
, “
3D-Coupling of Volume-of-Fluid and Lagrangian Particle Tracking for Spray Atomization Simulation in OpenFOAM
,”
SoftwareX
,
11
, p.
100483
.10.1016/j.softx.2020.100483
63.
Ma
,
J.
,
Hsiao
,
C. T.
, and
Chahine
,
G. L.
,
2017
, “
A Physics Based Multiscale Modeling of Cavitating Flows
,”
Comput. Fluids
,
145
, pp.
68
84
.10.1016/j.compfluid.2016.12.010
64.
Vogel
,
A.
, and
Lauterborn
,
W.
,
1988
, “
Acoustic Transient Generation by Laser-Produced Cavitation Bubbles Near Solid Boundaries
,”
J. Acoust. Soc. Am.
,
84
(
2
), pp.
719
731
.10.1121/1.396852
65.
Supponen
,
O.
,
Obreschkow
,
D.
,
Tinguely
,
M.
,
Kobel
,
P.
,
Dorsaz
,
N.
, and
Farhat
,
M.
,
2016
, “
Scaling Laws for Jets of Single Cavitation Bubbles
,”
J. Fluid Mech.
,
802
, pp.
263
293
.10.1017/jfm.2016.463
66.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Oxford, Britain
.
67.
Karimi
,
A.
, and
Leo
,
W. R.
,
1987
, “
Phenomenological Model for Cavitation Erosion Rate Computation
,”
Mater. Sci. Eng.
,
95
, pp.
1
14
.10.1016/0025-5416(87)90493-9
68.
Gavaises
,
M.
,
Villa
,
F.
,
Koukouvinis
,
P.
,
Marengo
,
M.
, and
Franc
,
J. P.
,
2015
, “
Visualisation and Les Simulation of Cavitation Cloud Formation and Collapse in an Axisymmetric Geometry
,”
Int. J. Multiphase Flow
,
68
, pp.
14
26
.10.1016/j.ijmultiphaseflow.2014.09.008
69.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
70.
Tian
,
B. C.
,
Li
,
L. M.
,
Meng
,
Y.
, and
Huang
,
B.
,
2022
, “
Multiscale Modeling of Different Cavitating Flow Patterns Around NACA66 Hydrofoil
,”
Phys. Fluids
,
34
(
10
), p.
103322
.10.1063/5.0117162
71.
Wu
,
J.
,
Ganesh
,
H.
, and
Ceccio
,
S. L.
,
2019
, “
Multimodal Partial Cavity Shedding on a Two-Dimensional Hydrofoil and Its Relation to the Presence of Bubbly Shocks
,”
Exp. Fluids
,
60
(
4
), p.
66
.10.1007/s00348-019-2706-5
72.
Wang
,
X. C.
,
Song
,
M. T.
,
Cheng
,
H. Y.
,
Ji
,
B.
, and
Li
,
L. M.
,
2024
, “
A Multiscale Euler–Lagrange Model for High-Frequency Cavitation Noise Prediction
,”
ASME J. Fluids Eng.
,
146
(
6
), p.
061502
.10.1115/1.4064296
You do not currently have access to this content.