Abstract

Unsteady turbulent wall bounded flows can include complex flow physics such as temporally varying mean pressure gradients, intermittent regions of high turbulence intensity, and interaction of different scales of motion. As a representative example, pulsating channel flow presents significant challenges for newly developed and existing turbulence models in computational fluid dynamics (CFD) simulations. The present study investigates the performance of the dynamic hybrid Reynolds‐averaged Navier‐Stokes-large eddy simulation RANS-LES (DHRL) modeling framework for nonstationary turbulent flows using two variants of an exponential temporal filter for calculating statistics of the resolved turbulent flow. The first adopts a static filter size (static exponential time filtering-SETF) based on the characteristic time scale of imposed mean flow unsteadiness. The second uses a dynamic filter size (dynamic exponential time filtering-DETF) to vary the filter size based on local statistics of the resolved turbulent flow. Both of the time-filtered variants and the baseline (stationary) form of DHRL are compared against an industry-standard RANS model, monotonically integrated large eddy simulation (MILES), and a conventional hybrid RANS-LES (HRL) models. Model performance is evaluated based on comparison with previously documented direct numerical simulation (DNS) and LES results. Simulations are performed for a fully developed flow in a channel with time-periodic driving pressure gradient. Results highlight the relative merits of each model type and indicate that the use of a time-filtering technique improves the accuracy of the DHRL model for nonstationary flow, and that a dynamic filter offers clear advantages over a static filter.

References

1.
Hino
,
M.
,
Kashiwayanagi
,
M.
,
Nakayama
,
A.
, and
Hara
,
T.
,
1983
, “
Experiments on the Turbulence Statistics and the Structure of a Reciprocating Oscillatory Flow
,”
J. Fluid Mech.
,
131
(
-1
), p.
363
.10.1017/S0022112083001378
2.
Sarpkaya
,
T.
,
1993
, “
Coherent Structures in Oscillatory Boundary Layers
,”
J. Fluid Mech.
,
253
(
-1
), p.
105
.10.1017/S0022112093001739
3.
Gündoğdu
,
M. Y.
, and
Çarpinlioğlu
,
M. O.
,
1999
, “
Present State of Art on Pulsatile Flow Theory: Laminar and Transitional Flow Regimes
,”
JSME Int. J. Ser.
,
B42
, p.
384
.
4.
Gündoğdu
,
M. Y.
, and
Çarpinlioğlu
,
M. O.
,
1999
, “
Present State of Art on Pulsatile Flow Theory 2: Turbulent Flow Regime
,”
JSME Int. J. Ser. B
,
42
(
3
), p.
398
.10.1299/jsmeb.42.398
5.
Spalart
,
P. R.
, and
Baldwin
,
B. S.
,
1987
, “
Direct Simulation of a Turbulent Oscillating Boundary Layer
,”
Turbulent Shear Flows
, Vol. 6,
Springer
,
Berlin, Germany
.
6.
Vasilyev
,
O. V.
,
Lund
,
T. S.
, and
Moin
,
P.
,
1998
, “
A General Class of Commutative Filters for LES in Complex Geometries
,”
J. Comput. Phys.
,
146
(
1
), pp.
82
104
.10.1006/jcph.1998.6060
7.
Lund
,
T. S.
,
2003
, “
The Use of Explicit Filters in Large Eddy Simulation
,”
Comput. Math. Appl.
,
46
(
4
), pp.
603
616
.10.1016/S0898-1221(03)90019-8
8.
Scotti
,
A.
, and
Piomelli
,
U.
,
2001
, “
Turbulence Models in Pulsating Flows
,”
AIAA
Paper No. 2001-0729.10.2514/6.2001-0729
9.
Scotti
,
A.
, and
Piomelli
,
U.
,
2001
, “
Numerical Simulation of Pulsating Turbulent Channel Flow
,”
Phys. Fluids
,
13
(
5
), pp.
1367
1384
.10.1063/1.1359766
10.
Fureby
,
C.
, and
Grinstein
,
F. F.
,
1998
, “
High Reynolds Number Large-Eddy Simulation of Free Shear Flows
,”
Sixteenth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics
, Vol.
515
,
Springer
,
Berlin, Heidelberg, Germany
.
11.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
12.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
13.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R. B.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Fourth: Internal Symposium, Turbulence, Heat and Mass Transfer
,
Antalya, Turkey
, Oct. 12–17, pp.
625
632
.
14.
Nichols
,
R. H.
,
2005
, “
Comparison of Hybrid RANS/LES Turbulence Models on a Circular Cylinder at High Reynolds Number
,”
AIAA
Paper No. 6.2005-498.10.2514/6.2005-498
15.
Nichols
,
R. H.
, and
Nelson
,
C. C.
,
2003
, “
Application of Hybrid RANS/LES Turbulence Models
,”
AIAA
Paper No. 6.2003-83.10.2514/6.2003-83
16.
Bhushan
,
S.
, and
Walters
,
D. K.
,
2012
, “
A Dynamic Hybrid RANS/LES Modeling Framework
,”
Phys. Fluids
,
24
(
015103
), pp.
1070
6631
.10.1063/1.3676737
17.
Walters
,
D. K.
,
Bhushan
,
S.
,
Alam
,
M. F.
, and
Thompson
,
D. S.
,
2013
, “
Investigation of a Dynamic Hybrid RANS/LES Modeling Methodology for Finite Volume CFD Simulations
,”
Flow, Turbul. Combust.
,
91
(
3
), pp.
643
667
.10.1007/s10494-013-9481-9
18.
Adedoyin
,
A. A.
,
Walters
,
D. K.
, and
Bhushan
,
S.
,
2015
, “
Investigation of Turbulence Model and Numerical Scheme Combinations for Practical Finite Volume Large Eddy Simulations
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
324
342
.10.1080/19942060.2015.1028151
19.
Bhushan
,
S.
,
Alam
,
M. F.
, and
Walters
,
D. K.
,
2013
, “
Evaluation of Hybrid RANS/LES Models for Prediction of Flow Around Surface Combatant and Suboff Geometries
,”
Comp. Fluids
,
88
, pp.
834
849
.10.1016/j.compfluid.2013.07.020
20.
Hassan
,
E.
,
Peterson
,
D. M.
,
Walters
,
D. K.
, and
Luke
,
E.
,
2016
, “
Dynamic Hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulation of a Supersonic Cavity
,”
AIAA J. Propul. Power
,
32
(
6
), pp.
1343
1352
.10.2514/1.B36132
21.
Hassan
,
E.
,
Luke
,
E. A.
,
Walters
,
D. K.
,
Peterson
,
D. M.
,
Eklund
,
D.
, and
Hagenmaier
,
M.
,
2017
, “
Computations of a Hydrogen-Fueled Scramjet Combustor on Locally Refined Meshes
,”
Flow Turbul. Combust.
,
99
(
2
), pp.
437
459
.10.1007/s10494-017-9821-2
22.
Roberts
,
S. W.
,
1959
, “
Control Chart Tests Based on Geometric Moving Averages
,”
Technometrics
,
1
(
3
), pp.
239
250
.10.1080/00401706.1959.10489860
23.
Pruett
,
C. D.
,
Gatski
,
T. B.
,
Grosch
,
C.
, and
Thacker
,
W. D.
,
2003
, “
The Temporally Filtered Navier–Stokes Equations: Properties of the Residual Stress
,”
Phys. Fluids
,
15
(
8
), pp.
2127
2140
.10.1063/1.1582858
24.
Luke
,
E.
, and
George
,
T.
,
2005
, “
Loci: A Rule-Based Framework for Parallel Multidisciplinary Simulation Synthesis
,”
J. Funct. Prog.
,
15
(
3
), pp.
477
502
.10.1017/S0956796805005514
25.
Luke
,
E. A.
,
Tong
,
X.
,
Wu
,
J.
,
Cinella
,
P.
, and
Chamberlain
,
R.
,
2014
,
CHEM 3.3: A Finite-Rate Viscous Chemistry Solver – The User Guide
,
Mississippi State University
, Starkville, MI.
26.
Poe
,
N. W.
,
Walters
,
D. K.
,
Luke
,
E. A.
, and
Morris
,
C. I.
,
2015
, “
A Low-Dissipation Second-Order Upwind Flux Formulation for Simulation of Complex Turbulent Flows
,”
ASME
Paper No. IMECE2015-53725.10.1115/IMECE2015-53725
27.
Ahrens
,
J.
,
Geveci
,
B.
, and
Law
,
C.
,
2005
,
ParaView: An End-User Tool for Large Data Visualization
,
Visualization Handbook
,
Elsevier
, Amsterdam, The Netherlands.
28.
Ayachit
,
U.
,
2015
,
The ParaView Guide: A Parallel Visualization Application
,
Kitware
, Clifton Park, NY.
29.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ= 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.10.1063/1.869966
30.
Mulloy Patrick
,
G.
,
1994
, “
Smoothing Data With Less Lag
,”
Technical Analysis of STOCKS & COMMODITIES
, 12(2), pp.
72
80
.
31.
Jamal
,
T.
,
Bhushan
,
S.
, and
Walters
,
D. K.
,
2020
, “
Numerical Simulation of Non-Stationary Turbulent Flows Using Double Exponential Dynamic Time Filtering Technique
,”
ASME
Paper No. FEDSM2020-20295.10.1115/FEDSM2020-20295
32.
Jamal
,
T.
,
Shobayo
,
O. O.
, and
Walters
,
D. K.
,
2021
, “
A New Variant of the Dynamic Hybrid RANS-LES Model for Complex Turbulent Flows
,”
ASME
Paper No. IMECE2021-72185.10.1115/IMECE2021-72185
33.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.10.1017/S0022112099007004
34.
Rumsey
,
C. L.
,
Carlson
,
J.-R.
,
Pulliam
,
T. H.
, and
Spalart
,
P. R.
,
2020
, “
Improvements to the Quadratic Constitutive Relation Based on NASA Juncture Flow Data
,”
AIAA J.
,
58
(
10
), pp.
4374
4384
.10.2514/1.J059683
35.
Jamal
,
T.
, and
Walters
,
D. K.
,
2020
, “
Investigation of an Algebraic Reynolds Stress Model for Simulation of Wall-Bounded Turbulent Flows With and Without Buoyancy Effects
,”
ASME
paper No. FEDSM2020-20354.10.1115/FEDSM2020-20354
You do not currently have access to this content.