Abstract

Determining the gender of an evidentiary sample can be an important part of casework analyses. Gender information, particularly when combined with mitochondrial DNA analysis, can serve to distinguish biological evidence from two people who share the same DNA type(s) but differ by sex. When typing sexual assault evidence, gender information can serve as confirmation that the “sperm fraction” extracted from swabs and stains actually contains male DNA and also as an indicator of the amount of male DNA present in the non-sperm fraction. The PCR-based assay described here relies on amplification of a small, polymorphic region of a homologous zinc finger protein locus present on the X and Y chromosomes. The gender of the sample donor is determined from the PCR product either by Haelll restriction enzyme digestion followed by gel electrophoresis or by hybridization to immobilized sequence specific oligonucleotide probes (reverse dot blot). When using the reverse dot blot approach, amplification and typing of the gender PCR product can be coupled to amplification and typing of the AmpliType® HLA DQα and PM markers. Sensitivity and mixture studies were performed in addition to the analysis of casework bloodstains and sexual assault kit samples. Additional studies using this gender determination assay are described in the accompanying paper.

References

1.
Jeffreys
A J
,
Wilson
V
,
Thein
S L
.
Hypervariable ‘minisatellite’ regions in human DNA
.
Nature
 0028-0836
1985
;
314
:
67
-
73
.
2.
Budowle
B
,
Waye
J S
,
Shutler
G G
,
Baechtel
S F
.
Haelll-a suitable restriction endonuclease for restriction fragment length polymorphism analysis of biological evidence samples
.
J Forensic Sci
1990
;
35
:
530
-
36
.
3.
Saiki
R
,
Scharf
S
,
Faloona
F
,
Mullis
K
,
Horn
G
,
Erlich
H A
,
Arnheim
N
.
Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia
.
Science
 1095-9203
1985
;
230
:
1350
-
54
.
4.
von Beroldingen
C H
,
Blake
E T
,
Higuchi
R
,
Sensabaugh
G H
,
Erlich
H A
.
Applications of PCR to the analysis of biological evidence. PCR technology, principles and amplifications for DNA amplification
.
Erlich
H. A.
, editor,
Stockton Press, Inc.
,
New York, NY
,
1989
;
203
-
23
.
5.
Reynolds
R
,
Sensabaugh
G
,
Blake
E
.
Analysis of genetic markers in forensic DNA samples using the polymerase chain reaction
.
Analyt Chem
1991
;
63
:
1
-
14
.
6.
Saiki
R K
,
Walsh
P S
,
Levenson
C H
,
Erlich
H A
.
Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes
.
Proc National Acad Sci, USA
1989
;
86
:
6230
-
34
.
7.
Sajantila
A
,
Strom
M
,
Budowle
B
,
Karhunen
P J
,
Peltonen
L
.
The polymerase chain reaction and post-mortern forensic identity testing: application of amplified D1S80 and HLA-DQ alpha loci to the identification of fire victims
.
Forensic Sci Int
1991
;
51
:
23
-
34
.
8.
Blake
E
,
Mihalovich
J
,
Higuchi
R
,
Walsh
P S
,
Erlich
H
.
Polymerase chain reaction (PCR) amplification and human leukocyte antigen (HLA)-DQα oligonucleotide typing on biological evidence samples: casework experience
.
J Forensic Sci
1992
;
37
:
700
-
26
.
9.
Comey
C T
,
Budowle
B
,
Adams
D E
,
Baumstark
A L
,
Lindsey
J A
,
Presley
L A
.
PCR amplification and typing of the HLA DQα gene in forensic samples
.
J Forensic Sci
1993
;
38
:
239
-
49
.
10.
Budowle
B
,
Lindsey
J A
,
DeCou
J A
,
Koons
B W
,
Giusti
A M
,
Comey
C T
.
Validation and population studies of the loci LDLR, GYPA, HBGG, D7S8, and GC (PM Loci), and HLA-DQα using a multiplex amplification and typing procedure
.
J Forensic Sci
1995
;
40
:
45
-
54
.
11.
Herrin
G
 Jr
,
Fildes
N
,
Reynolds
R
.
Evaluation of the AmpliType® PM DNA test system on forensic case samples
.
J Forensic Sci
1994
;
39
(
5
):
1247
-
53
.
12.
Hochmeister
M N
,
Budowle
B
,
Borer
U V
,
Eggmann
U
,
Comey
C T
,
Dimhofer
R
.
Typing of deoxynucleic acid (DNA) extracted from compact bone from human remains
.
J Forensic Sci
1991
;
36
:
1649
-
61
.
13.
Wiegand
P
,
Budowle
B
,
Rand
S
,
Brinkmann
B
.
Forensic validation of the STR systems SE33 and TC11
.
Int J Legal Med
1993
;
105
:
315
-
20
.
14.
Whitaker
J
,
Clayton
T M
,
Urquhart
A J
,
Millican
E S
,
Downes
T J
,
Kimpton
C P
,
Gill
P
.
Short tandem repeat typing of bodies from a mass disaster: high success rate and characteristic amplification patterns in highly degraded samples
.
BioTechniques
 0736-6205
1995
;
18
:
670
-
77
.
15.
Stacks
B
,
Witte
M M
.
Sex determination of dried blood stains using the polymerase chain reaction (PCR) with homologous X-Y primers of the zinc finger protein gene
.
J Forensic Sci
1996
;
41
(
2
):
287
-
90
.
16.
Schneider-Gädicke
A
,
Beer-Romero
P
,
Brown
L G
,
Nussbaum
R
,
Page
D C
.
ZFX has a gene structure similar to ZFY, the putative human sex determinant, and escapes X inactivation
.
Cell
 0092-8674
1989
;
57
:
1247
-
58
.
17.
Page
D
,
Mosher
R
,
Simpson
E
,
Fisher
E
,
Mardon
G
,
Pollack
J
,
McGillivary
B
,
de la Chapelle
A
,
Brown
L
.
The sex-determining region of the human Y chromosome encodes a finger protein
.
Cell
 0092-8674
1987
;
51
:
1091
-
1104
.
18.
Sullivan
K M
.
A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin
.
BioTechniques
 0736-6205
1993
;
15
(
4
):
637
-
41
.
19.
Miller
S A
,
Dykes
D D
,
Polesky
H F
.
A simple salting out procedure for extracting DNA from human nucleated cells
.
Nucl Acids Res
1988
;
6
:1215.
20.
Walsh
P S
,
Varlaro
J
,
Reynolds
R
.
A rapid chemiluminescent method for quantitation of human DNA
.
Nucl Acids Res
1992
;
20
:
5061
-
65
.
21.
Perkin-Elmer, AmpliType® User Guide, Version 2.
22.
Aasen
E
,
Medrano
J F
.
Amplification of the ZFY and ZFX genes for sex identification in humans, cattle, sheep and goats
.
Bio/Technology
 0733-222X
1990
;
8
:
1279
-
80
.
This content is only available via PDF.
You do not currently have access to this content.