Abstract

Calculation of age from fetal and newborn remains may be problematic, and when these remains are altered by maceration, decomposition or burning, age may be more difficult to discern. When soft tissue indicators are transformed, then two techniques exist for accurate age determination; dental development, which may prove difficult given the degree of tissue alteration; and appearance, size and fusion of ossification centers, including diaphyseal length, which may yield inaccurate ages if shrinkage is not accounted for. This study is undertaken to facilitate age calculation by systematically re-evaluating diaphyseal shrinkage and determine shrinkage rates from wet to carbonized states and wet to calcined states using Petersohn and Köhler's data, originally published in German and then published in Fazekas and Kósa (1978:362–369). Average shrinkage, standard deviation, minimum and maximum values are calculated for each diaphysis and then for all diaphyses between 4–10 lunar months (LM) and for newborns. Associated values for carbonized diaphyses are: 4 LM-32.50% ± 12.12%; 5 LM-14.04% ± 4.44%; 6 LM-6.78% ± 1.06%; 7 LM-4.18% ± 0.31%; 8 LM-3.47% ± 0.42%; 9 LM-3.05% ± 0.18%; 10 LM-2.46% ± 0.67%; and in newborns 2.16% ± 0.29%. Similar values for calcined diaphyses are: 4 LM-40.11% ± 17.51%; 5 LM-18.29% ± 4.42%; 6 LM-9.84% ± 1.27%; 7 LM-9.82% ± 0.51%; 8 LM-9.42% ± 0.72%; 9 LM-9.45% ± 0.33%; 10 LM-8.94% ± 0.37%; and in newborns 8.96% ± 0.49%. These findings suggest that percent shrinkage due to carbonization and calcination is greatest in the earliest age groups, decreasing substantially with advancing age. The rates of shrinkage, however, vary by the burning process utilized and age group studied. These general findings are similar to those of Petersohn and Köhler, yet specific values for percent shrinkage vary greatly from values cited in this analysis. These data provide a means to assess the degree of shrinkage that occurs for each diaphysis for each given age group.

References

1.
Daya
S
.
Accuracy of gestational age estimation by means of fetal crown-rump length measurement
.
Am J Obstet Gynecol
1993
;
168
(
3-1
):
903
-
8
.
2.
Birkbeck
J A
,
Billewicz
W Z
,
Thomson
A M
.
Human foetal measurements between 50 and 150 days of gestation, in relation to crown-heel length
.
Ann Hum Biol
1975
;
2
(
2
):
173
-
8
.
3.
Alonso
K
,
Portman
E
.
Fetal weighs and measurements as determined by postmortem examination and their correlation with ultrasound examination
.
Arch Pathol Lab Med
1995
;
119
:
179
-
80
.
4.
Queenan
J T
,
Kubarych
S F
,
Griffin
L P
,
Anderson
G D
.
Diagnostic ultrasound: determination of fetal biparietal diameters as an index of gestational age
.
J Kentucky Med Assn
1975
;
73
(
11
):
595
-
8
.
5.
Jordaan
H VF
.
Biological variation in the biparietal diameter and its bearing on clinical ultrasonography
.
Am J Obstet Gynecol
1978
;
131
(
1
):
53
-
9
.
6.
Mercer
B M
,
Sklar
S
,
Shariatmader
A
,
Gillieson
M S
.
D'Alton ME. Fetal foot length as a predictor of gestational age
.
Am J Obstet Gynecol
1987
;
156
(
2
):
350
-
5
.
7.
Goldstein
I
,
Reece
E A
,
Hobbins
J C
.
Sonographic appearance of the fetal heel ossification centers and foot length measurements provide independent markers for gestational age estimation
.
Am J Obstet Gynecol
1988
;
159
(
4
):
923
-
6
.
8.
Mandarim-de-Lacerda
C A
.
Foot length growth related to crown-rump length, gestational age and weight in human staged fresh fetuses
.
Surg Radiol Anat
1990
;
12
:
103
-
7
.
9.
Kumar
G P
,
Kumar
U K
.
Estimation of gestational age from hand and foot length
.
Med Sci Law
1993
;
33
(
4
):
48
-
50
.
10.
Amato
M
,
Hüppi
P
,
Claus
R
.
Rapid biometric assessment of gestational age in very low birth weight infants
.
J Perinat Med
1991
;
19
:
367
-
71
.
11.
Queenan
J T
,
O'Brien
G D
,
Campbell
S
.
Ultrasound measurement of fetal limb bones
.
Am J Obstet Gynecol
1980
;
138
(
3
):
297
-
302
.
12.
O'Brien
G D
,
Queenan
J T
,
Campbell
S
.
Assessment of gestational age in the second trimester by real-time ultrasound measurement of the femur length
.
Am J Obstet Gynecol
1981
;
139
(
5
):
540
-
5
.
13.
O'Brien
G D
,
Queenan
J T
.
Growth of the ultrasound fetal femur length during normal pregnancy
.
Am J Obstet Gynecol
1981
;
141
(
7
):
833
-
7
.
14.
Kelemen
E
,
Janossa
M
,
Cavlo
W
,
Fliedner
T M
.
Developmental age estimated by bone-length measurement in human fetuses
.
Anat Rec
1984
;
209
:
547
-
52
.
15.
Bowie
J D
,
Andreotti
R F
.
Estimating gestational age in utero
.
Radiol Clin North America
1982
;
20
(
2
):
325
-
34
.
16.
Seeds
J W
,
Cefalo
R C
.
Relationship of fetal limb lengths to both biparietal diameter and gestational age
.
Obstet Gynecol
1982
;
60
(
6
):
680
-
5
.
17.
Ott
W J
.
Accurate gestational dating
.
Obstet Gynecol
1985
;
66
(
3
):
311
-
5
.
18.
Yagel
S
,
Adoni
A
,
Oman
S
,
Wax
Y
,
Hochner-Celnikier
D
.
A statistical examination of the accuracy of combining femoral length and biparietal diameter as an index of fetal gestational age
.
B J Obstet Gynaecol
1986
;
93
:
109
-
15
.
19.
Huxley
A K
.
Comparability of gestational age values derived from diaphyseal length and foot length from known forensic fœtal remains
.
Med Sci Law
1998
;
38
(
1
):
42
-
51
.
20.
Gustafson
G
.
Age determination on teeth
.
J Amer Dent Assn
1950
;
41
:45.
21.
Johanson
G
.
Age determination from human teeth
.
Odontol Revy
1971
;
22
(
21S
):
1
-
126
.
22.
Burdi
A R
,
Garn
S M
,
Superstine
J
.
Correlates of permanent tooth development in prenatal time
.
J Dent Res
1975
;
54
(
3
):697.
23.
Deutsch
D
,
Pe'er
E
,
Gedalia
I
.
Changes in size, morphology and weight of human anterior teeth during the fetal period
.
Growth
 0017-4793
1984
;
48
:
74
-
85
.
24.
Olivier
G
,
Pineau
H
.
Détermination de l'age du fœtus et de l'embryon
.
Arch D'Anatomie (La Semaine Des Hopitaux)
1958
;
34
(
1
):
21
-
8
.
25.
Olivier
G
,
Pineau
H
.
Nouvelle détermination de la taille fœtale d'après les longueurs diaphysaires des os longs
.
Ann Med Leg
1960
;
40
:
141
-
4
.
26.
Fazekas
I G
,
Kósa
F
.
Forensic fetal osteology
.
Budapest
,
Akadémiai Kiadó Publishers
,
1978
.
27.
Weaver
D S
.
Forensic aspects of fetal and neonatal skeletons
. In
Reichs
K J
,
Forensic Osteology, Springfield, Ill. Charles C Thomas, Publ.
,
1986
;
90
-
100
.
28.
Huxley
A K
,
Jimenez
S B
.
Error in Olivier and Pineau's regression formulae for calculation of stature and lunar age from radial diaphyseal length in forensic fetal remains
.
Am J Phys Anthrop
1996
;
100
:
435
-
7
.
29.
Petersohn
F
,
Köhler
J
.
Die Bedeutung der Veränderungen an fetalen Röhrenknochen nach Trocknung und Hitzeeinwirkung für die forensische Begutachtung der Fruchtgrösse
.
Arch Kriminol
1965
;
135
:
143
-
62
.
30.
Huxley
A K
.
Analysis of shrinkage in human fetal diaphyseal lengths from fresh to dry bone using Petersohn and Köhlers data
.
J Forensic Sci
1998
;
43
(
2
):
423
-
6
.
31.
Felts
W JL
.
The prenatal development of the human femur
.
Am J Anat
1954
;
94
(
1
):
1
-
44
.
32.
James
J R
,
Truscott
J
,
Congdon
P J
,
Horsman
A
.
Measurement of bone mineral content in the human fetus by photon absorptiomentry
.
Early Hum Dev
1986
;
13
:
169
-
81
.
This content is only available via PDF.
You do not currently have access to this content.