Significant performance enhancement of microturbines is predicted by implementing various wave-rotor-topping cycles. Five different advantageous cases are considered for implementation of a four-port wave rotor into two given baseline engines. In these thermodynamic analyses, the compressor and turbine pressure ratios and the turbine inlet temperatures are varied, according to the anticipated design objectives of the cases. Advantages and disadvantages are discussed. Comparison between the theoretic performance of wave-rotor-topped and baseline engines shows a performance enhancement up to 34%. General design maps are generated for the small gas turbines, showing the design space and optima for baseline and topped engines. Also, the impact of ambient temperature on the performance of both baseline and topped engines is investigated. It is shown that the wave-rotor-topped engines are less prone to performance degradation under hot-weather conditions than the baseline engines.

1.
Craig
,
P.
, 1997, “
The Capstone Turbogenerator as an Alternative Power Source
” SAE Paper 970292.
2.
Kang
,
Y.
,
McKeirnan
,
R.
, 2003, “
Annular Recuperator Development and Performance Test for 200 kW Microturbine
” ASME Paper GT-2003-38522.
3.
Benini
,
E.
,
Toffolo
,
A.
, and
Lazzaretto
,
A.
, 2003, “
Centrifugal Compressor of A 100 KW Microturbine: Part 1-Experimental and Numerical Investigations on Overall Performance
” ASME Paper GT2003-38152.
4.
Zauner
,
E.
,
Chyou
,
Y. P.
,
Walraven
,
F.
, and
Althaus
,
R.
, 1993, “
Gas Turbine Topping Stage Based on Energy Exchangers: Process and Performance
” ASME Paper 93-GT-58.
5.
Rogers
,
C.
, 2003, “
Some Effects of Size on the Performance of Small Gas Turbine
” ASME Paper GT2003-38027.
6.
Shi
,
J.
,
Venkata
,
R.
,
Vedula
,
J. H.
,
Connie
,
E. B.
,
Scott
,
S. O.
,
Bertuccioli
,
L.
, and
Bombara
,
D. J.
, 2002, “
Preliminary Design of Ceramic Components for the ST5+ Advanced Microturbine Engine
” ASME Paper GT-2002-30547.
7.
Walsh
,
C.
,
An
,
C.
,
Kapat
,
J. S.
, and
Chow
,
L. C.
, 2002, “
Feasibility of a High-Temperature Polymer-Derived-Ceramic Turbine Fabricated Through Micro-Stereolithography
” ASME Paper GT-2002-30548.
8.
McDonald
,
C. F.
, 1996, “
Heat Recovery Exchanger Technology for Very Small Gas Turbine
Journal of Turbo and Jet Engines
,
13
, pp.
239
261
.
9.
Proeschel
,
R. A.
, 2002, “
Proe 90TM Recuperator for Microturbine Applications
” ASME Paper GT-2002-30406.
10.
Carman
,
B. G.
,
Kapat
,
J. S.
,
Chow
,
L. C.
, and
An
,
L.
, 2002, “
Impact of a Ceramic Microchannel Heat Exchanger on a Microturbine
” ASME Paper GT2002-30544.
11.
McDonald
,
C. F.
, 2000, “
Low Cost Recuperator Concept for Microturbine Applications
” ASME Paper GT2000-167.
12.
Utriainen
,
E.
, and
Sunden
,
B.
, 2001, “
A Comparison of Some Heat Transfer Surfaces for Small Gas Turbine Recuperators
” ASME Paper GT2001-0474.
13.
Maziasz
,
P. J.
,
Pint
,
B. A.
,
Swindeman
,
R. W.
,
More
,
K. L.
, and
Lara-Curzio
,
E.
, 2003, “
Selection, Development and Testing of Stainless Steel and Alloys for High-Temperature Recuperator Applications
” ASME Paper GT2003-38762.
14.
Wilson
,
J.
and
Paxson
,
D. E.
, 1993, “
Jet Engine Performance Enhancement Through Use of a Wave-Rotor Topping Cycle
” NASA TM-4486.
15.
Fatsis
A.
, and
Ribaud
Y.
, 1999, “
Thermodynamic Analysis of Gas Turbines Topped with Wave Rotors
Aerosp. Sci. Technol.
1270-9638,
3
, No.
5
, pp.
293
299
.
16.
Akbari
,
P.
, and
Müller
,
N.
, 2003, “
Performance Improvement of Small Gas Turbines Through Use of Wave Rotor Topping Cycles
” ASME Paper GT2003-38772.
17.
Akbari
,
P.
, and
Müller
,
N.
, 2003, “
Performance Investigation of Small Gas Turbine Engines Topped with Wave Rotors
AIAA Pap.
0146-3705 2003-4414.
18.
Meyer
,
A.
, 1947, “
Recent Developments in Gas Turbines
Chin. J. Mech. Eng.
0577-6686,
69
, No.
4
, pp.
273
277
.
19.
Real
,
R.
, 1946, “
The 3000 kW Gas Turbine Locomotive Unit
Brown Boveri Rev.
0007-2486,
33
, No.
10
, pp.
270
-
271
.
20.
Meyer
,
A.
, 1947, “
Swiss Develop New Gas Turbine Units
Electr. World
0013-4457,
127
, pp.
38
-
40
.
21.
Azoury
P. H.
, 1992,
Engineering Applications of Unsteady Fluid Flow
,
John Wiley and Sons
, New York.
22.
Rose
,
P. H.
, 1979, “
Potential Applications of Wave Machinery to Energy and Chemical Processes
Proceedings of the 12th International Symposium on Shock Tubes and Waves
, pp.
3
30
.
23.
Seippel
,
C.
, 1940, Swiss Patent No. 225426.
24.
Seippel
,
C.
, 1942, Swiss Patent No. 229280.
25.
Seippel
,
C.
, 1946, “
Pressure Exchanger
” US Patent 2399394.
26.
Seippel
,
C.
, 1949, “
Gas Turbine Installation
” US Patent 2461186.
27.
Taussig
,
R. T.
,
Hertzberg
,
A.
, 1984, “
Wave Rotors for Turbomachinery
Winter Annual Meeting of the ASME
, edited by
Sladky
,
J. F.
, Machinery for Direct Fluid-Fluid Energy Exchange, AD-07, pp.
1
7
.
28.
Zehnder
,
G.
,
Mayer
,
A.
and
Mathews
,
L.
, 1989, “
The Free Running Comprex®
” SAE Paper 890452.
29.
Mayer
,
A.
,
Oda
,
J.
,
Kato
,
K.
,
Haase
,
W.
and
Fried
,
R.
, 1989, “
Extruded Ceramic-A New Technology for the Comprex® Rotor
” SAE Paper 890453.
30.
Hiereth
,
H.
, 1989, “
Car Tests With a Free-Running Pressure-Wave Charger-A Study for an Advanced Supercharging System
” SAE Paper 890 453.
31.
Azoury
,
P. H.
, 1965-66, “
An Introduction to the Dynamic Pressure Exchanger
Proc. Inst. Mech. Eng.
0020-3483,
180
, Part 1, No.
18
, pp.
451
480
.
32.
Guzzella
,
L.
,
Wenger
,
U.
, and
Martin
,
R.
, 2000, “
IC-Engine Downsizing and Pressure-Wave Supercharging for Fuel Economy
” SAE Paper 2000-01-1019.
33.
Shreeve
,
R. P.
,
Mathur
,
A.
, 1985,
Proceeding ONR/NAVAIR Wave Rotor Research and Technology Workshop
, Report NPS-67-85-008,
Naval Postgraduate School
, Monterey, CA.
34.
Paxson
,
D. E.
, 1992, “
A General Numerical Model for Wave-Rotor Analysis
” NASA TM-105740.
35.
Paxson
,
D. E.
, 1996, “
Numerical Simulation of Dynamic Wave Rotor Performance
J. Propul. Power
0748-4658,
12
, No.
5
, pp.
949
-
957
.
36.
Welch
,
G. E.
,
Jones
,
S. M.
, and
Paxson
,
D. E.
, 1997, “
Wave Rotor-Enhanced Gas Turbine Engines
J. Eng. Gas Turbines Power
0742-4795,
119
, No.
2
, pp.
469
477
.
37.
Welch
,
G. E.
, 1997, “
Macroscopic Balance Model for Wave Rotors
J. Propul. Power
0748-4658,
13
, No.
4
, pp.
508
516
.
38.
Welch
,
G. E.
, 1997, “
Two-Dimensional Computational Model for Wave Rotor Flow Dynamics
J. Eng. Gas Turbines Power
0742-4795,
119
, No.
4
, pp.
978
985
.
39.
Wilson
,
J.
, and
Paxson
,
D. E.
, 1996, “
Wave Rotor Optimization for Gas Turbine Topping Cycles
J. Propul. Power
0748-4658,
12
, No.
4
, pp.
778
785
. See SAE Paper 951411, and NASA TM 106951.
40.
Welch
,
G. E.
, 2000, “
Overview of Wave-Rotor Technology for Gas Turbine Engine Topping Cycles
Novel Aero Propulsion Systems International Symposium, The Institution of Mechanical Engineers
, pp.
2
17
.
41.
Wilson
,
J.
, 1997, “
Design of NASA Lewis 4-Port Wave Rotor Experiment
AIAA Pap.
0146-3705 97-3139. Also NASA CR-202351.
42.
Wilson
J.
, and
Fronek
,
D.
, 1993, “
Initial Results from the NASA-Lewis Wave Rotor Experiment
AIAA Pap.
0146-3705 93-2521. Also NASA TM-106148.
43.
Wilson
,
J.
, 1997, “
An Experiment on Losses in a Three Port Wave-Rotor
” NASA CR-198508.
44.
Wilson
,
J.
, 1998, “
An Experimental Determination of Loses in a Three-Port Wave Rotor
J. Eng. Gas Turbines Power
0742-4795,
120
, pp.
833
842
. Also ASME Paper 96- GT-117, and NASA CR-198456.
45.
Paxson
,
D. E.
, 1993, “
A Comparison Between Numerically Modeled and Experimentally Measured Loss Mechanisms in Wave Rotors
AIAA Pap.
0146-3705 93-2522.
46.
Paxson
,
D. E.
, 1995, “
Comparison Between Numerically Modeled and Experimentally Measured Wave-Rotor Loss Mechanism
J. Propul. Power
0748-4658,
11
, No.
5
, pp.
908
914
. Also NASA TM-106279.
47.
Paxson
D. E.
, and
Wilson
,
J.
, 1995, “
Recent Improvements to and Validation of the One Dimensional NASA Wave Rotor Model
” NASA TM-106913.
48.
Paxson
,
D. E.
, and
Nalim
,
M. R.
, 1999, “
Modified Through-Flow Wave-Rotor Cycle with Combustor Bypass Ducts
J. Propul. Power
0748-4658,
15
, No.
3
, pp.
462
-
467
. Also AIAA Paper 97-3140, and NASA TM-206971.
49.
Nalim
,
M. R.
, and
Paxson
,
D. E.
, 1999, “
Method and Apparatus for Cold-Gas Reinjection in Through-Flow and Reverse-Flow Wave Rotors
” US Patent 5,894,719.
50.
Jones
,
S. M.
, and
Welch
,
G. E.
, 1996, “
Performance Benefits for Wave Rotor-Topped Gas Turbine Engines
” ASME Paper 96-GT-075.
51.
Weber
,
H. E.
, 1986, “
Shock-Expansion Wave Engines: New Directions for Power Production
” ASME Paper 86-GT-62.
52.
Weber
,
H. E.
, 1995,
Shock Wave Engine Design
,
John Wiley and Sons
, New York.
53.
Akbari
,
P.
,
Kharazi
,
A. A.
, and
Müller
,
N.
, 2003, “
Utilizing Wave Rotor Technology to Enhance the Turbo Compression in Power and Refrigeration Cycles
” ASME Paper IMECE2003-44222.
54.
Gyarmathy
,
G.
, 1983, “
How Does the Comprex Pressure-Wave Supercharger Work?
” SAE Paper 830234.
55.
Kentfield
,
J. A. C.
, 1993,
Nonsteady, One-Dimensional, Internal, Compressible Flows
,
Oxford University Press
, Oxford.
56.
Taussig
,
R. T.
, 1984, “
Wave Rotor Turbofan Engines for Aircraft
Winter Annual Meeting of the ASME
, edited by
Sladky
,
J. F.
, Machinery for Direct Fluid-Fluid Energy Exchange, AD-07, pp.
9
45
.
57.
Welch
,
G. E.
, 1996, “
Two-Dimensional Computational Model for Wave Rotor Flow Dynamics
” ASME Paper 96-GT-550.
58.
El Hadik
,
A. A.
, 1990, “
The Impact of Atmospheric Conditions on Gas Turbine Performance
J. Eng. Gas Turbines Power
0742-4795,
112
, No.
4
, pp.
590
595
.
59.
Akbari
,
P.
,
Müller
,
N.
, and
Nalim
,
M. R.
, 2004, “
Performance Improvement of Recuperated and Unrecuperated Microturbines Using Wave Rotor Machines
,” 2004 ASME-ICED Spring Technical Conference, Japan.
You do not currently have access to this content.