A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine’s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least-squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters’ ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

1.
Luppold
,
R. H.
,
Gallops
,
G. W.
,
Kerr
,
L. J.
, and
Roman
,
J. R.
, 1989, “
Estimating In-Flight Engine Performance Variations Using Kalman Filter Concepts
,” AIAA-89-2584.
2.
Turevskiy
,
A.
,
Meisner
,
R.
,
Luppold
,
R. H.
,
Kern
,
R. A.
, and
Fuller
,
J. W.
, 2002, “
A Model-Based Controller for Commercial Aero Gas Turbines
,” ASME Paper No. GT2002-30041.
3.
Kobayashi
,
T.
,
Simon
,
D. L.
, and
Litt
,
J. S.
, 2005, “
Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters
,” ASME Paper No. GT2005-68494.
4.
Brotherton
,
T.
,
Volponi
,
A.
,
Luppold
,
R.
, and
Simon
,
D. L.
, 2003, “
eSTORM: Enhanced Self Tuning On-Board Real-Time Engine Model
,”
Proc. of 2003 IEEE Aerospace Conference
,
IEEE
,
New York
, pp.
3075
3086
.
5.
Kobayashi
,
T.
, and
Simon
,
D. L.
, 2003, “
Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics
,” ASME Paper No. GT2003-38550.
6.
Kobayashi
,
T.
, and
Simon
,
D. L.
, 2004, “
Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault Diagnostics
,” ASME Paper No. GT2004-53640.
7.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K. D.
, 1990, “
Adaptive Simulation of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
112
, pp.
168
175
.
8.
Tsalavoutas
,
A.
,
Mathioudakis
,
K.
,
Stamatis
,
A.
, and
Smith
,
M.
, 2001, “
Identifying Faults in the Variable Geometry System of a Gas Turbine Compressor
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
33
39
.
9.
Ogaji
,
S. O. T.
,
Sampath
,
S.
,
Singh
,
R.
, and
Probert
,
S. D.
, 2002, “
Parameter Selection for Diagnosing a Gas-Turbine’s Performance-Deterioration
,”
Appl. Energy
0306-2619,
73
, pp.
25
46
.
10.
España
,
M. D.
, 1994, “
Sensor Biases Effect on the Estimation Algorithm for Performance-Seeking Controllers
,”
J. Propul. Power
0748-4658,
10
, pp.
527
532
.
11.
Callier
,
F. M.
, and
Desoer
,
C. A.
, 1991,
Linear Systems Theory
,
Springer-Verlag
,
Berlin
, p.
240
.
12.
Stewart
,
G. W.
, 1973,
Introduction to Matrix Computations
,
Academic Press
,
New York
, pp.
322
324
.
13.
Chen
,
S.
,
Billings
,
S. A.
, and
Luo
,
W.
, 1989, “
Orthogonal Least Squares Methods and Their Application to Non-Linear System Identification
,”
Int. J. Control
0020-7179,
50
, pp.
1873
1896
.
14.
Chen
,
S.
,
Cowan
,
C. F. N.
, and
Grant
,
P. M.
, 1991, “
Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks
,”
IEEE Trans. Neural Netw.
1045-9227,
2
, pp.
302
309
.
15.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K. D.
, 1992, “
Optimal Measurement and Health Index Selection for Gas Turbine Performance Status and Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
114
, pp.
209
216
.
16.
Grönstedt
,
T. U. J.
, 2002, “
Identifiability in Multi-Point Gas Turbine Parameter Estimation Problems
,” ASME Paper No. GT2002-30020.
17.
Pinelli
,
M.
, and
Spina
,
P. R.
, 2002, “
Gas Turbine Field Performance Determination: Sources of Uncertainties
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
155
160
.
18.
Mathioudakis
,
K.
, and
Kamboukos
,
Ph.
, 2004, “
Assessment of the Effectiveness of Gas Path Diagnostic Schemes
,” ASME Paper No. GT2004-53862.
You do not currently have access to this content.