An experimental study is presented on the interaction of flashback originating from flame propagation in the boundary layer (1), from combustion driven vortex breakdown (2) and from low bulk flow velocity (3). In the investigations, an aerodynamically stabilized swirl burner operated with hydrogen–air mixtures at ambient pressure and with air preheat was employed, which previously had been optimized regarding its aerodynamics and its flashback limit. The focus of the present paper is the detailed characterization of the observed flashback phenomena with simultaneous high speed (HS) particle image velocimetry (PIV)/Mie imaging, delivering the velocity field and the propagation of the flame front in the mid plane, in combination with line-of-sight integrated OH*-chemiluminescence detection revealing the flame envelope and with ionization probes which provide quantitative information on the flame motion near the mixing tube wall during flashback. The results are used to improve the operational safety of the system beyond the previously reached limits. This is achieved by tailoring the radial velocity and fuel profiles near the burner exit. With these measures, the resistance against flashback in the center as well as in the near wall region is becoming high enough to make turbulent flame propagation the prevailing flashback mechanism. Even at stoichiometric and preheated conditions this allows safe operation of the burner down to very low velocities of approximately 1/3 of the typical flow velocities in gas turbine burners. In that range, the high turbulent burning velocity of hydrogen approaches the low bulk flow speed and, finally, the flame begins to propagate upstream once turbulent flame propagation becomes faster than the annular core flow. This leads to the conclusions that finally the ultimate limit for the flashback safety was reached with a configuration, which has a swirl number of approximately 0.45 and delivers NOx emissions near the theoretical limit for infinite mixing quality, and that high fuel reactivity does not necessarily rule out large burners with aerodynamic flame stabilization by swirling flows.
Skip Nav Destination
Article navigation
January 2016
Research-Article
Interaction of Flame Flashback Mechanisms in Premixed Hydrogen–Air Swirl Flames
Thomas Sattelmayer,
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Search for other works by this author on:
Christoph Mayer,
Christoph Mayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Janine Sangl
Janine Sangl
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Search for other works by this author on:
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Christoph Mayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Janine Sangl
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
Technische Universität München,
Garching 85748, Germany
Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received June 29, 2015; final manuscript received July 1, 2015; published online August 25, 2015. Editor: David Wisler.
J. Eng. Gas Turbines Power. Jan 2016, 138(1): 011503 (12 pages)
Published Online: August 25, 2015
Article history
Received:
June 29, 2015
Revised:
July 1, 2015
Citation
Sattelmayer, T., Mayer, C., and Sangl, J. (August 25, 2015). "Interaction of Flame Flashback Mechanisms in Premixed Hydrogen–Air Swirl Flames." ASME. J. Eng. Gas Turbines Power. January 2016; 138(1): 011503. https://doi.org/10.1115/1.4031239
Download citation file:
Get Email Alerts
Experimental Characterization of Superheated Ammonia Spray From a Single-Hole Spray M Injector
J. Eng. Gas Turbines Power (August 2025)
Related Articles
An Experimental Study of Lean Blowout With Hydrogen-Enriched Fuels
J. Eng. Gas Turbines Power (April,2012)
Study on the Operational Window of a Swirl Stabilized Syngas Burner Under Atmospheric and High Pressure Conditions
J. Eng. Gas Turbines Power (March,2012)
Experimental Investigation of Thermoacoustic Instabilities for a Model Combustor With Varying Fuel Components
J. Eng. Gas Turbines Power (March,2012)
Experiments on Flame Flashback in a Quasi-2D Turbulent Wall Boundary Layer for Premixed Methane-Hydrogen-Air Mixtures
J. Eng. Gas Turbines Power (January,2011)
Related Proceedings Papers
Related Chapters
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
PSA Level 2 — NPP Ringhals 2 (PSAM-0156)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
The Identification of the Flame Combustion Stability by Combining Principal Component Analysis and BP Neural Network Techniques
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)