Compliant gas foil bearings are composed of two layers of thin metallic foil and a thin film of gas to support the journal. The bottom foil creates an elastic structure which supports the top foil. This support structure can take a variety of shapes that range from a series of bumps around the circumference to a series of overlapping leaves. The top foil and the rotation of the rotor create a wedge of air that supports the rotor. The complaint foil structure deforms in response to the pressure developed within the gas film. These bearings have several advantages over conventional fluid film bearings. These advantages include reduced weight due to the elimination of the oil system, stable operation at higher speeds and temperatures, low power loss at high speeds and long life with little maintenance. Some disadvantages of gas foil bearings are low load capacities at low speed and modest stiffness and damping values. Due to these properties, compliant gas foil bearings are commonly used in specialized applications such as compressors for aircraft pressurization, engines for turboshaft propulsion, air cycle machines (ACMs), turboexpanders, and small microturbines. The ability to predict the behavior of these bearings and design them to meet the needs of the application is invaluable to the design process. This behavior can include things such as bearing stiffness, damping, and load capacity. Currently most foil bearing analysis tools involve some sort of coupling between hydrodynamics and structural analyses. These analysis tools can often have convergence issues and can require the use of empirically derived characteristics. This paper reviews the current status of the compliant gas foil bearings research, focusing mainly on the journal bump-type gas foil bearings and the development of the analysis tools for these bearings. This paper contributes to the field by making recommendations of the future developments of the analytical tools of journal bump-type gas foil bearings.

References

1.
Somaya
,
K.
,
Yamashita
,
T.
, and
Yoshimoto
,
S.
,
2012
, “
Experimental and Numerical Investigation of the High-Speed Instability of Aerodynamic Foil Journal Bearings for Micro Turbomachinery
,”
ASME
Paper No. IJTC2012-61130.
2.
DellaCorte
,
C.
, and
Bruckner
,
R. J.
,
2011
, “
Remaining Technical Challenges and Future Plans for Oil-Free Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042502
.
3.
Suriano
,
F. J.
,
1981
,
Gas Foil Bearing Development Program
, U.S. Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, OH, Report No. AFWAL-TR-81-2095.
4.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,”
ASME
Paper No. 97-GT-347.
5.
Heshmat
,
H.
,
Walton
,
J.
,
DellaCorte
,
C.
, and
Valco
,
M.
,
2000
, “
Oil-Free Turbocharger Demonstration Paves Way to Gas Turbine Engine Applications
,”
ASME
Paper No. 2000-GT-0620.
6.
Radil
,
K. C.
, and
DellaCorte
,
C.
,
2002
, “
The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings
,”
Tribol. Trans.
,
45
(
2
), pp.
199
204
.
7.
Lucero
,
J. M.
, and
DellaCorte
,
C.
,
2004
, “
Oil-Free Rotor Support Technologies for Long Life, Closed Cycle Brayton Turbines
,”
AIAA Second International Energy Conversion and Engineering Conference
(
IECEC
), Providence, RI, Aug. 16–19, pp.
1583
1591
.
8.
Sim
,
K.
,
Lee
,
Y.-B.
, and
Kim
,
T. H.
,
2013
, “
Effects of Mechanical Preload and Bearing Clearance on Rotordynamic Performance of Lobed Gas Foil Bearings for Oil-Free Turbochargers
,”
Tribol. Trans.
,
56
(
2
), pp.
224
235
.
9.
Baumeister
,
H. K.
,
1958
, “
Recording Support Devices
,” U.S. Patent No. 2,862,781.
10.
Gross
,
W. A.
,
1958
, “
Film Lubrication—V. Infinitely Long Incompressible Lubricating Films of Various Shapes
,”
IBM Research Laboratory
, San Jose, CA, Report No. RJ 117-5, pp.
54
79
.
11.
Licht
,
L.
, and
Branger
,
M.
,
1973
,
Design, Fabrication, and Performance of Foil Journal Bearing for the Brayton Rotating Unit
, Vol.
2243
,
National Aeronautics and Space Administration
, Washington, DC.
12.
Ruscitto
,
D.
,
McCormick
,
J.
, and
Gray
,
S.
,
1978
, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine. I. Journal Bearing Performance
,” Mechanical Technology, Latham, NY, Technical Report No. NASA CR-135368.
13.
Cherubim
,
J.
,
1974
, “
Hydrodynamic Foil Bearings
,” U.S. Patent No. 3,809,443.
14.
Gross
,
W. A.
,
1962
,
Gas Film Lubrication
,
Wiley
,
Chichester, UK
.
15.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
,
2008
, “
Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,”
Tribol. Trans.
,
51
(
3
), pp.
254
264
.
16.
DellaCorte
,
C.
, and
Valco
,
M. J.
,
2000
, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
,”
Tribol. Trans.
,
43
(
4
), pp.
795
801
.
17.
Heshmat
,
H.
,
1994
, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capability
,”
ASME J. Tribol.
,
116
(
2
), pp.
287
294
.
18.
Yu
,
H.
,
Shuangtao
,
C.
,
Rugang
,
C.
,
Qiaoyu
,
Z.
, and
Hongli
,
Z.
,
2011
, “
Numerical Study on Foil Journal Bearings With Protuberant Foil Structure
,”
Tribol. Int.
,
44
(
9
), pp.
1061
1070
.
19.
Lai
,
T.
,
Chen
,
S.
,
Ma
,
B.
,
Zheng
,
Y.
, and
Hou
,
Y.
,
2014
, “
Effects of Bearing Clearance and Supporting Stiffness on Performances of Rotor-Bearing System With Multi-Decked Protuberant Gas Foil Journal Bearing
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Trib.
,
228
(7), 780–788.
20.
San Andrés
,
L.
, and
Chirathadam
,
T. A.
,
2012
, “
A Metal Mesh Foil Bearing and a Bump-Type Foil Bearing: Comparison of Performance for Two Similar Size Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102501
.
21.
Song
,
J.-H.
, and
Kim
,
D.
,
2007
, “
Foil Gas Bearing With Compression Springs: Analyses and Experiments
,”
ASME J. Tribol.
,
129
(
3
), pp.
628
639
.
22.
Feng
,
K.
,
Zhao
,
X.
, and
Guo
,
Z.
,
2015
, “
Design and Structural Performance Measurements of a Novel Multi-Cantilever Foil Bearing
,” Proc. Inst. Mech. Eng., Part C:
J. Mech. Eng. Sci.
,
229
(10), pp. 1830–1838.
23.
Du
,
J.
,
Zhu
,
J.
,
Li
,
B.
, and
Liu
,
D.
,
2014
, “
Hydrodynamic Analysis of Multileaf Gas Foil Bearing With Backing Springs
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
5
), pp.
529
547
.
24.
Kim
,
D.
, and
Zimbru
,
G.
,
2012
, “
Start–Stop Characteristics and Thermal Behavior of a Large Hybrid Airfoil Bearing for Aero-Propulsion Applications
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032502
.
25.
Swanson
,
E. E.
,
Heshmat
,
H.
, and
Walton
,
J.
,
2002
, “
Performance of a Foil-Magnetic Hybrid Bearing
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
375
382
.
26.
Heshmat
,
H.
,
Walowit
,
J.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Tribol.
,
105
(
4
), pp.
647
655
.
27.
Rubio
,
D.
, and
San Andrés
,
L.
,
2006
, “
Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
653
660
.
28.
Schiffmann
,
J.
, and
Spakovszky
,
Z.
,
2013
, “
Foil Bearing Design Guidelines for Improved Stability
,”
ASME J. Tribol.
,
135
(
1
), p.
011103
.
29.
Andrés
,
L. S.
, and
Kim
,
T. H.
,
2008
, “
Forced Nonlinear Response of Gas Foil Bearing Supported Rotors
,”
Tribol. Int.
,
41
(
8
), pp.
704
715
.
30.
San Andrés
,
L.
,
Rubio
,
D.
, and
Kim
,
T. H.
,
2007
, “
Rotordynamic Performance of a Rotor Supported on Bump Type Foil Gas Bearings: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
850
857
.
31.
Heshmat
,
H.
, and
Ku
,
C.-P. R.
,
1994
, “
Structural Damping of Self-Acting Compliant Foil Journal Bearings
,”
ASME J. Tribol.
,
116
(
1
), pp.
76
82
.
32.
Radil
,
K.
,
Howard
,
S.
, and
Dykas
,
B.
,
2002
, “
The Role of Radial Clearance on the Performance of Foil Air Bearings
,”
Tribol. Trans.
,
45
(
4
), pp.
485
490
.
33.
Howard
,
S.
,
Dellacorte
,
C.
,
Valco
,
M. J.
,
Prahl
,
J. M.
, and
Heshmat
,
H.
,
2001
, “
Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing
,”
Tribol. Trans.
,
44
(
4
), pp.
657
663
.
34.
Sim
,
K.
,
Lee
,
Y.-B.
,
Song
,
J. W.
,
Kim
,
J.-B.
, and
Kim
,
T. H.
,
2014
, “
Identification of the Dynamic Performance of a Gas Foil Journal Bearing Operating at High Temperatures
,”
J. Mech. Sci. Technol.
,
28
(
1
), pp.
43
51
.
35.
Radil
,
K.
, and
Zeszotek
,
M.
,
2004
, “
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
,”
Tribol. Trans.
,
47
(
4
), pp.
470
479
.
36.
Dykas
,
B.
, and
Howard
,
S. A.
,
2004
, “
Journal Design Considerations for Turbomachine Shafts Supported on Foil Air Bearings
,”
Tribol. Trans.
,
47
(
4
), pp.
508
516
.
37.
DellaCorte
,
C.
,
Zaldana
,
A. R.
, and
Radil
,
K. C.
,
2004
, “
A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery
,”
ASME J. Tribol.
,
126
(
1
), pp.
200
207
.
38.
Ku
,
C.-P. R.
, and
Heshmat
,
H.
,
1992
, “
Compliant Foil Bearing Structural Stiffness Analysis: Part I—Theoretical Model Including Strip and Variable Bump Foil Geometry
,”
ASME J. Tribol.
,
114
(
2
), pp.
394
400
.
39.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
,
2006
, “
A Preliminary Foil Gas Bearing Performance Map
,” Society of Tribologists and Lubrication Engineers, Annual Meeting and Exhibition, Calgary, AB, Canada, May 7–11.
40.
Stribeck
,
R.
,
1901
,
Kugellager für beliebige Belastungen
,
Buchdruckerei AW Schade
,
Berlin
.
41.
DellaCorte
,
C.
,
2011
, “
Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbomachinery
,”
Tribol. Trans.
,
54
(
4
), pp.
674
684
.
42.
Peng
,
J.-P.
, and
Carpino
,
M.
,
1993
, “
Calculation of Stiffness and Damping Coefficients for Elastically Supported Gas Foil Bearings
,”
ASME J. Tribol.
,
115
(
1
), pp.
20
27
.
43.
Peng
,
J.-P.
, and
Carpino
,
M.
,
1994
, “
Coulomb Friction Damping Effects in Elastically Supported Gas Foil Bearings
,”
Tribol. Trans.
,
37
(
1
), pp.
91
98
.
44.
Carpino
,
M.
, and
Talmage
,
G.
,
2003
, “
A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
Tribol. Trans.
,
46
(
4
), pp.
560
565
.
45.
Ypma
,
T. J.
,
1995
, “
Historical Development of the Newton–Raphson Method
,”
SIAM Rev.
,
37
(
4
), pp.
531
551
.
46.
Peng
,
Z.-C.
, and
Khonsari
,
M.
,
2004
, “
Hydrodynamic Analysis of Compliant Foil Bearings With Compressible Air Flow
,”
ASME J. Tribol.
,
126
(
3
), pp.
542
546
.
47.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2008
, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012504
.
48.
Feng
,
K.
, and
Kaneko
,
S.
,
2010
, “
Analytical Model of Bump-Type Foil Bearings Using a Link–Spring Structure and a Finite-Element Shell Model
,”
ASME J. Tribol.
,
132
(
2
), p.
021706
.
49.
Howard
,
S. A.
, and
San Andrés
,
L.
,
2011
, “
A New Analysis Tool Assessment for Rotordynamic Modeling of Gas Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
022505
.
50.
Bensouilah
,
H.
,
Lahmar
,
M.
, and
Bou-Saïd
,
B.
,
2012
, “
Elasto-Aerodynamic Lubrication Analysis of a Self-Acting Air Foil Journal Bearing
,”
Lubr. Sci.
,
24
(
3
), pp.
95
128
.
51.
Lee
,
D.
,
Kim
,
D.
, and
Sadashiva
,
R. P.
,
2011
, “
Transient Thermal Behavior of Preloaded Three-Pad Foil Bearings: Modeling and Experiments
,”
ASME J. Tribol.
,
133
(
2
), p.
021703
.
52.
Kim
,
D.
,
Ki
,
J.
,
Kim
,
Y.
, and
Ahn
,
K.
,
2012
, “
Extended Three-Dimensional Thermo-Hydrodynamic Model of Radial Foil Bearing: Case Studies on Thermal Behaviors and Dynamic Characteristics in Gas Turbine Simulator
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
052501
.
53.
Feng
,
K.
, and
Kaneko
,
S.
,
2013
, “
A Thermohydrodynamic Sparse Mesh Model of Bump-Type Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022501
.
54.
Moraru
,
L.
, and
Keith
,
T.
,
2005
, “
Lobatto Point Quadrature for Thermal Lubrication Problems Involving Compressible Lubricants
,”
World Tribology Congress III
(WTC2005), Washington, DC, Sept. 12–16, pp.
171
172
.
55.
Feng
,
K.
, and
Guo
,
Z.
,
2014
, “
Prediction of Dynamic Characteristics of a Bump-Type Foil Bearing Structure With Consideration of Dynamic Friction
,”
Tribol. Trans.
,
57
(
2
), pp.
230
241
.
56.
Wang
,
N.
,
Huang
,
H.-C.
, and
Hsu
,
C.-R.
,
2013
, “
Parallel Optimum Design of Foil Bearing Using Particle Swarm Optimization Method
,”
Tribol. Trans.
,
56
(
3
), pp.
453
460
.
57.
Larsen
,
J. S.
, and
Santos
,
I. F.
,
2014
, “
Efficient Solution of the Non-Linear Reynolds Equation for Compressible Fluid Using the Finite Element Method
,”
J. Braz. Soc. Mech. Sci. Eng.
,
37
(
3
), pp.
945
957
.
58.
Bonello
,
P.
, and
Pham
,
H.
,
2014
, “
The Efficient Computation of the Nonlinear Dynamic Response of a Foil–Air Bearing Rotor System
,”
J. Sound Vib.
,
333
(
15
), pp.
3459
3478
.
59.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2007
,
Concepts and Applications of Finite Element Analysis
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.